首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The action of ATP and its analogs as well as the effects of alkali ions were studied in their action on the ouabain receptor. One single ouabain receptor with a dissociation constant (KD) of 13 nM was found in the presence of (Mg2+ + Pi) and (Na+ + Mg2+ + ATP). pH changes below pH 7.4 did not affect the ouabain receptor. Ouabain binding required Mg2+, where a curved line in the Scatchard plot appeared. The affinity of the receptor for ouabain was decreased by K+ and its congeners, by Na+ in the presence of (Mg2+ + Pi), and by ATP analogs (ADP-C-P, ATP-OCH3). Ca2+ antagonized the action of K+ on ouabain binding. It was concluded that the ouabain receptor exists in a low affinity (Rα) and a high affinity conformational state (Rβ). The equilibrium between both states is influenced by ligands of (Na+ + K+)-ATPase. With 3 mM Mg2+ a mixture between both conformational states is assumed to exist (curved line in the Scatchard plot).  相似文献   

3.
Phosphatidylethanolamine in freshly drawn human erythrocytes is trinitrophenylated by 2,4,6-trinitrobenzene sulfonic acid only slowly and to a maximum of 32%. After different preincubation procedures at 37°C in saline media in the absence of glucose (24 h without additive, 1–5 h with 8 mM hexanol or 1–4 h with the SH reagent, 5 mM tetrathionate) the rate of subsequent trinitrophenylation of phosphatidylethanolamine, in the absence of the additives, is greatly enhanced and the amount of phospholipid reacting increased. Glucose or inosine prevent these effects, inhibitors of glycolysis abolish this protection.The results indicate that in fresh as well as in glycolysing incubated erythrocytes phosphatidylethanolamine in the outer layer of the membrane lipid is shielded by a protein. Conformational changes of this protein induced by metabolic starvation and perturbing agents expose the phospholipid head group to 2, 4, 6-trinitrobenzene sulfonic acid. In addition, a “flip-flop” of phosphatidylethanolamine from the inner to the outer layer may also contribute to the effects observed.  相似文献   

4.
Structural consequences of antiarrhythmic drug interaction with erythrocyte membranes were analyzed in terms of resulting changes in the activity of membrane-associated acetylcholinesterase. When enzyme inhibitory effects of drugs were compared at concentrations producing an equivalent degree of erythrocyte antihemolysis, a number of distinct groupings emerged, indicating that the molecular consequences of drug-membrane interaction are not identical for all agents examined. Differences in drug-induced acetylcholinesterase inhibition in intact erythrocytes, erythrocyte membranes and a brain synaptic membrane preparation emphasized the role of membrane structural organization in determining the functional consequences of antiarrhythmic interaction in any given system. While the inhibitory actions of lidocaine, D-600 and bretylium in intact red cells were not altered by an increased transmembrane chloride gradient, enhanced enzyme inhibition by quinidine and propranolol was observed under these conditions. The diverse perturbational actions of these membrane-stabilizing antiarrhythmics observed here may be indicative of a corresponding degree of complexity in the mechanisms whereby substances modify the potential-dependent properties of excitable tissues.  相似文献   

5.
Reaction of isolated bovine rod outer segment membrane with radioactiveN-ethylmaleimide, both in the presence and absence of 1% dodecyl sulfate followed by dodecyl sulfate-polyacrylamide gel electrophoresis, shows that six sulfhydryl groups (96% of total sulfhydryl in this membrane) are located on the rhodopsin molecule.On the basis of their reactivity towardsp-chloromercuribenzoate andp-chloromercuribenzene sulfonate in suspensions of outer segment membranes, the sulfhydryl groups of rhodopsin can be divided into three pairs. One pair is rapidly modified, both in light and darkness. This modification does not impair the recombination capacity of opsin with 11-cis retinaldehyde under regeneration of rhodopsin. A second pair is modified upon prolonged interaction with thep-chloromercuriderivatives in darkness. Modification of this pair leaves the typical rhodopsin absorbance at 500 nm intact, but a proportional loss of recombination capacity does occur. The third pair is only modified after illumination and is probably located in the vicinity of the chromophoric center.The difference between these results and those obtained by modification with dithiobis-(2-nitrobenzoic acid) orN-ethylmaleimide in suspension, where even upon prolonged exposure to light as well as in darkness only two sulfhydryl groups of rhodopsin are modified, is explained by the detergent-like character of thep-chloromercuri-derivatives.  相似文献   

6.
7.
1. The number of exposed sulfhydryl groups in cattle rod photoreceptor membranes has been determined in suspension and after solubilization in various detergents both before and after illumination.2. In suspensions, two sulfhydryl groups are modified per mole of rhodopsin, both by Ellman's reagent 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide, while no extra SH groups are uncovered upon illumination. Neither reagent affects the spectral integrity of rhodopsin at 500 nm and the recombination capacity is retained upon modification of both rhodopsin and opsin.3. However, in detergents (digitonin, Triton X-100 and cetyltrimethylammonium bromide (CTAB)) 2–3 additional sulfhydryl groups appear upon illumination, in agreement with earlier reports.4. A total number of six sulfhydryl groups and two disulfide bridges are found in rod photoreceptor membranes, expressed per mole of rhodopsin.5. DTNB reacts somewhat faster with membrane suspensions after than before illumination. The less reactive sulfhydryl modifying agents O-methylisourea and methyl-p-nitrobenzene sulfonate show a similar behavior.6. It is concluded that illumination of rhodopsin in vivo will not uncover additional SH groups, although the reactivity of one exposed SH group may increase somewhat. These findings also exclude a role of SH groups in the covalent binding of the chromophore.  相似文献   

8.
Purified membrane vesicles were treated with various reagents specific for different amino acid side-chains. Titration of sulfhydryl groups with specific reagents shows that the sulfhydryl content of membrane vesicles as estimated directly is similar to that found by treating spheroplasts or cells and then isolating the membrane vesicles. The blocking of sulfhydryl groups specifically inhibits the α-methylglucoside transport system (phosphotransferase system), whereas the glycerophosphate acylation system is not affected. The kinetics of inhibition of the first system show that a high reactivity of the sulfhydryl groups is involved. Inhibition of the acyltransferase activity by sulfhydryl reagents occurs only on partial denaturation of the membranes induced by mild sonication, heat or toluene treatment. The Inhibition is at the level of the glycerol 3-phosphate:acyl thioester acyltransferase.The effects of sonication and/or sulfhydryl reagents were measured by sulfhydryl titration, by assays of NADH oxidase and d-lactate dehydrogenase activities, as well as by 1-anilino-8-naphthalene sulfonate binding. The results support the hypothesis that the acyltransferase system is embedded within the membrane and that the readily accessible permease system is closer to (or at) the surface of the membrane.  相似文献   

9.
Protein A24 lyase is an isopeptidase   总被引:3,自引:0,他引:3  
  相似文献   

10.
Mitochondrial swelling induced by 2,3-bis(chloromethyl)-1,4-naphthoquinone (CMNQ) was found to be a non-energy linked, oxygen and sulfhydryl-dependent, substrate-independent, osmotic process, that lacks cation specificity. Swelling was inhibited by cysteine and DTNB, and the CMNQ induced swelling resulted in a decrease in mitochondrial reactive sulfhydryl groups; thus, mitochondrial sulfhydryl interaction was mandatory in the CMNQ swelling process. The non-enzymatic reaction of CMNQ with cysteine but not cystine resulted in the consumption of oxygen, implicating sulfhydryl redox activity in the swelling process. High levels of tocopherol and histidine depressed the CMNQ induced swelling, suggesting that free radicals and singlet oxygen are important in the CMNQ induced swelling process.These findings support the proposition that CMNQ interacts with mitochondrial reductase systems and sulfhydryl groups in such a way as to generate superoxide radical which subsequently may dismute to H2O2 and produce ·OH and possibly singlet oxygen. These toxic oxygen species may be responsible for the CMNQ-promoted sulfhydryl depletion and mitochondrial swelling.  相似文献   

11.
Salmonella typhimurium strains which are commonly used in the Ames test for screening potential carcinogens were examined for a number of drug-metabolizing systems. Neither cytochrome P-450 itself nor two activities catalyzed by the cytochrome P-450 system in mammalian cells, i.e., benzpyrene monooxygenase and ethoxycoumarin O-deethylation, could be detected. Nor do these bacterial strains demonstrate any ability to detoxify epoxides by hydrating them or to conjugate p-nitrophenol with glucuronic acid.On the other hand, S. typhimurium strains G46, TA1535, TA100, TA1538 and TA98 contain considerable amounts of acid-soluble thiols, approx. 5–10% of which is glutathione. These bacteria can also enzymatically conjugate glutathione with 1-chloro-2,4-dinitrobenzene (CDNB) and can reduce oxidized glutathione using NADPH as cofactor.Thus, enzymatic and non-enzymatic reaction of immediate carcinogens with thiol groups in S. typhimurium may have a significant effect on the outcome of the Ames test in certain cases.  相似文献   

12.
Arginine deiminase (EC 3.5.3.6) from Mycoplasmaarthritidis is a dimeric enzyme. Velocity centrifugation in 6 M guanidine HCl and peptide mapping of the BrCN fragments suggest that the subunits are identical. The reaction of one out of four sulfhydryl groups with 0.3 mM 5,5′-dithiobis-(2-nitrobenzoic acid) has a half-life of about 30 min in 2 M guanidine HCl at 15°, pH 8. The enzyme is irreversibly inhibited by 1 mM formamidinium ion within 1 min. Inactivation by this affinity label is resolvable into two concurrent first-order reactions in the presence of guanidinium ion; the fraction of enzyme which reacts at the faster rate is about 50%. These results are interpreted as evidence for two catalytic subunits which differ in conformation.  相似文献   

13.
(1) Only (R,S)2′,3′-epoxypropyl β-d-glucopyranoside of the complete series of mono (R,S)2′.3′-epoxypropyl ethers and glycosides of d-glucopyranose significantly inactivated yeast hexokinase.(2) (R,S)2′,3′-Epoxypropyl β-d-glucopyranoside inactivates yeast hexokinase in the absence of MgATP2?, The rate of inactivation is unaffected by MgATP2?.(3) The rate of inactivation of hexokinase with (R,S)2′,3′-epoxypropyl β-d-ilucopyranoside was much greater when hexokinase was present in a monomeric form than when it was present in a dimeric form.(4) (R,S)2′,3′-Epoxypropyl β-d-glucopyranoside has a high Kt (0.38 M) and at a saturating concentrarion, the first order rate constant for the inactivation of monomeric hexokinase is 8.3 · 10?4 sec.(5) d-Glucose protects against this inactivation and this was used to derive a dissocistion constant of 0.21 mM for d-glucose in the absence of MgATP2?.(6) The alkylation of yeast hexokinase by (R,S)2′,3′-epoxypropyl β-d-gluco-pyranoside was not specific to the active site. When the concentration of (R,S)2′,3′-epoxypropyl β-d-glucopyranoside was 50 mM two thiol groups outside the active site were also alkylated.(7) The reaction between 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and yeast hexokinase was examined in detail. Two thiol groups per monomer (mol. wt. 50000) reacted with a second order rate constant of 27 1 mole?1 sec?1. A third thiol group reacted more slowly with a second-order rate constant of 1.6 1 mole?1 sec?1 and a fourth thiol group reacted very slowly with inactivation of the enzyme. Tue second-order rate constant in this case was 0.1 1 mole?1 sec?1.  相似文献   

14.
15.
Rat pancreatic islets have been shown to possess specific binding sites for 125I-labeled insulin. Enzymatic and chemical modification of islets are used to reveal important structures and chemical groups for insulin binding. Pretreatment with trypsin, neuraminidase, 1-ethyl-3(3-dimethylamino)carbodiimide (a carboxyl reagent), tetranitromethane (a tyrosyl and thiol reagent), and 1,3-difluoro-4,6-dinitrobenze (modification of protein functional groups) decreased binding of insulin. This was due to the diminuation of the receptor number; in the case of trypsin-pretreatment also the receptor affinity was decreased. Inhibition of insulin binding was in each case associated with a decrease of the inhibitory effect of exogenous insulin on glucose-induced insulin secretion (not measured in the case of difluorodinitrobenzene and tetranitromethane). Phospholipase A2 (cleavage of phospholipids) did not affect these parameters. 5,5′-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) and possibly p-chloromercuribenzoate (both thiol reagents) increased the number of receptors and decreased receptor affinity, but did not influence the inhibitory effect of insulin on insulin release. It is concluded that protein functional groups, sialic acid, carboxyl and tyrosyl groups, but not phospholipids and probably not sylfhyryl groups are important for the interaction of insulin with insulin receptors of rat pancreatic islets.  相似文献   

16.
When a dilute suspension of the mitochondrial fraction of rat liver homogenates was incubated with chemically synthesized succinyl-CoA, a product was rapidly formed which was retained at pH 3.9 on Dowex 50 (H+). Although its acid-base properties were indistinguishable from those of δ-aminolevulinic acid, the product did not form a pyrrole with acetylacetone, nor was its enzymatic formation dependent on added glycine. The enzyme which cleaved succinyl-CoA to the δ-aminolevulinic acid-like product was inhibited by phenylmethyl sulfonylfluoride. The first substance formed by the peptidase was the unstable thioester of succinic acid and cysteamine which underwent rearrangement to the more stable N-succinyl cysteamine above pH 4.0.It is apparent that the assay of δ-aminolevulinic acid synthetase (EC 2.3.1.37) by the ion-exchange method of Ebert et al. (Ebert, P.S., Tschudy, D.P., Choudhry, J.N. and Chirigos, M.A. (1970) Biochim. Biophys. Acta 208, 236–250) can yield erroneous results with succinyl-coenzyme A as substrate, especially when incubations are carried out for less than 25 min.  相似文献   

17.
The ATP/ADP exchange is shown to be a partial reaction of the (H+ + K+)-ATPase by the absence of measurable nucleoside diphosphokinase activity and the insensitivity of the reaction to P1, P5 -di(adenosine-5′) pentaphosphate, a myokinase inhibitor. The exchange demonstrates an absolute requirement for Mg2+ and is optimal at an ADP/ATP ratio of 2. The high ATP concentration (K0.5 = 116 μM) required for maximal exchange is interpreted as evidence for the involvement of a low affinity form of nucleotide site. The ATP/ADP exchange is regarded as evidence for an ADP-sensitive form of the phosphoenzyme. In native enzyme, pre-steady state kinetics show that the formation of the phosphoenzyme is partially sensitive to ADP while modification of the enzyme by pretreatment with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of Mg2+ results in a steady-state phosphoenzyme population, a component of which is ADP sensitive. The ATP/ADP exchange reaction can be either stimulated or inhibited by the presence of K+ as a function of pH and Mg2+.  相似文献   

18.
A method for the subcellular fractionation of pig platelet homogenates by sucrose density gradient centrifugation is described. The procedure is simple, highly reproducible and yields two major particulate fractions and a soluble phase. One particulate fraction consists almost entirely of membrane fragments and is relatively free from granule contamination. The other particulate zone contains the platelet granules and mitochondria. The distribution on the gradients of the enzymes lactate dehydrogenase, succinate dehydrogenase, 5′-nucleotidase, leucyl β-naphthylamidase and cholinesterase has been studied and organelle localisation further substantiated by electron microscopy. The degree of solubilisation of certain marker enzymes during homogenisation has been investigated and the parallel release of these enzymes with the soluble phase marker enzyme lactate dehydrogenase, suggests they have a true biphasic location between the soluble and particulate components of the cell. No significant difference was found in the molar ratios of cholesterol to phospholipid in the subcellular fractions but the content of each lipid was twice as high in the membrane fraction as in the granule fraction.  相似文献   

19.
Mono- and diacylglycerol lipases are differentially inhibited by heparin. No other glycosaminoglycan resembles heparin in this respect. Mono- and diacylglycerol lipases can be separated by heparin Sepharose affinity chromatography. Diacylglycerol lipase was completely retained on a heparin--Sepharose column and was eluted with either 0.5 M NaCl or 2–5 mg/ml heparin, whereas monoacylglycerol lipase was recovered in the washings. Adenosine phosphates markedly affected the activity of diacylglycerol lipase in a concentration dependent manner. ATP was the most potent inhibitor followed by ADP. AMP had no effect and cAMP slightly stimulated the diacylglycerol lipase.  相似文献   

20.
Cholesterol is a major component of biological membranes, yet there is very little information concerning its distribution across the membrane. Recent experiments in our laboratory, using cholesterol oxidase, have demonstrated that cholesterol can undergo a rapid transbilayer movement in lecithin-cholesterol vesicles in a half-time of 1 min or less at 37°C. In order to support this conclusion, we have sought other approaches to the measurement of this process. We now report our finding that the transbilayer movement of thiocholesterol in phospholipid vesicles occurs in a half-time of 1 min or less at 20°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号