首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Supernatant fluid from Leptothrix discophora SS-1 cultures possessed high Mn2+-ozidizing activity. Studies of temperature and pH optima, chemical inhibition, and protease sensitivity suggested that the activity may be enzymatic. Kinetic studies of unconcentrated supernatant fluid indicated an apparent Km of 7 microM Mn2+ in the 1 to 200 microM Mn2+ range. The greatest Vmax value observed was 1.4 nmol of Mn2+ oxidized min-1 micrograms of protein-1 in unconcentrated samples. When the supernatant fluid was concentrated on DEAE-cellulose and the activity was eluted with MgSO4, an Mn2+-oxidizing protein was detected in the concentrate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mn2+-oxidizing protein appeared to have a molecular weight of 110,000 in 10% polyacrylamide gels and of 100,000 in 8% gels. Periodic acid-Schiff base staining of overloaded polyacrylamide gels showed that the DEAE-cellulose concentrate contained abundant high-molecular-weight polysaccharides; concurrent staining of the Mn2+-oxidizing band suggested that it too contained carbohydrate components. Isolation of the protein was achieved by subjecting the DEAE-cellulose concentrate to Sephacryl gel filtration in the presence of 1% sodium dodecyl sulfate, followed by preparative electrophoresis and reverse-polarity elution. However, these procedures resulted in loss of a large proportion of the activity, which precluded recovery of the protein in significant quality.  相似文献   

2.
The Mn(2+)-oxidizing bacterium Pseudomonas fluorescens GB-1 deposits Mn oxide around the cell. During growth of a culture, the Mn(2+)-oxidizing activity of the cells first appeared in the early stationary growth phase. It depended on the O2 concentration in the culture during the late logarithmic growth phase. Maximal activity was observed at an oxygen concentration of 26% saturation. The activity could be recovered in cell extracts and was proportional to the protein concentration in the cell extracts. The specific activity was increased 125-fold by ammonium sulfate precipitation followed by reversed-phase and gel filtration column chromatographies. The activity of the partly purified Mn(2+)-oxidizing preparation had a pH optimum of circa 7 and a temperature optimum of 35 degrees C and was lost by heating. The Mn(2+)-oxidizing activity was sensitive to NaN3 and HgCl2. It was inhibited by KCN, EDTA, Tris, and o-phenanthroline. Although most data indicated the involvement of protein in Mn2+ oxidation, the activity was slightly stimulated by sodium dodecyl sulfate at a low concentration and by treatment with pronase and V8 protease. By polyacrylamide gel electrophoresis, two Mn(2+)-oxidizing factors with estimated molecular weights of 180,000 and 250,000 were detected.  相似文献   

3.
A deoxyribonucleic acid (DNA)-dependent DNA polymerase (DNA nucleotidyltransferase) was purified 3,000-fold from the marine Pseuodomonas sp. BAL-31. The molecular weight of the native enzyme was estimated by glycerol gradient sedimentation to be 110,000. The enzyme migrated in sodium dodecyl sulfate-acrylamide gels as a single polypeptide with a molecular weight of 105,000. An absolute requirement for divalent cation was satisfied by Mg2+ or Mn2+ at concentrations of 1 mM. Monovalent cations at concentrations higher than 50 mM showed an inhibitory effect. The polymerase activity was resistant to N-ethylmaleimide and showed a wide pH optimum.  相似文献   

4.
Alkaline phosphatase was purified from bovine polymorphonuclear neutrophils by butanol extraction and a combination of ion exchange, gel filtration and affinity chromatography. The enzyme was partially purified 2300-fold with a 4.7% yield and a sp. act. of 206 units/mg of protein. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a single activity band with the mol. wt of 165,000. The pH optima for the enzyme were 10.0 with p-nitrophenylphosphate and phenylphosphate and were 9.0 when beta-glycerophosphate, AMP and ADP were used. The enzyme was activated by Mg2+, Mn2+, Co2+ and Ni2+ but was inhibited by Zn2+. The enzyme was inhibited by EDTA and the EDTA-inactivated enzyme was reactivated by Mg2+, Mn2+ and Co2+ but not Zn2+.  相似文献   

5.
Mn-superoxide dismutase (SOD) and Fe-SOD were isolated from Methylomonas J, an aerobic methylotrophic bacterium, grown in methylamine media containing either manganese (Mn-rich medium) or iron (Fe-rich medium), respectively. The specific activity of the Mn-SOD was 2250 units mg-1 (mol of Mn)-1 (mol of dimer)-1, and the metal content of the enzyme was 0.98 mol of Mn and 0.12 mol of Fe per mole of dimer, while those of Fe-SOD were 88.5 units mg-1 (mol of Fe)-1 (mol of dimer)-1 and 1.04 mol of Fe and 0.02 mol of Mn. The electrophoretic mobilities in the presence of sodium dodecyl sulfate, with or without urea, and the chromatographic behavior on an HPLC column using an octadodecyl silicated column and a gel permeation column were identical. Amino acid compositions were practically indistinguishable in both SODs. The enzyme activity was restored by dialysis of an apoprotein obtained from the Mn-enzyme with either manganese sulfate or ferrous ammonium sulfate up to an activity level similar to that for the native Mn-SOD and the native Fe-SOD, respectively. The same result has been reported with the reconstitution using an apoprotein obtained from the Fe-enzyme [Yamakura, F., Matsumoto, T., & Terauchi, K. (1990) Free Radical Res. Commun. (in press)]. These results suggest the possibility that both types of SODs are composed of a single apoprotein synthesized in cells grown in either the Fe-rich medium or the Mn-rich medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The sesquiterpene cyclase, trichodiene synthetase, has been purified from a supernatant fraction of Fusarium sporotrichioides by hydrophobic interaction, anion exchange, and gel filtration chromatography. Purified enzyme had a specific activity 15-fold higher than that previously reported for preparations of terpene cyclases. Molecular weight determinations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography indicated the enzyme to be a dimer with a subunit of Mr 45,000. The requirement of Mg2+ (Km 0.1 mM) for activity could be partially substituted with Mn2+ at a concentration of 0.01 mM, but higher concentrations of Mn2+ were inhibitory. Maximum activity was observed between pH 6.75 and pH 7.75. The Km for farnesyl pyrophosphate was 0.065 microM.  相似文献   

7.
Human manganese poisoning or manganism results in damage to the substantia nigra of the brain stem, a drop in the level of the inhibitory neurotransmitter dopamine, and symptoms resembling those of Parkinson's disease. Manganic (Mn3+) manganese ions were shown to be readily produced by O-2 in vitro and spontaneously under conditions obtainable in the human brain. Mn3+ as its pyrophosphate complex was shown to rapidly and efficiently carry out four-electron oxidations of dopamine, its precursor dopa (3,4-dihydroxyphenylalanine), and its biosynthetic products epinephrine and norepinephrine. Mn3+-pyrophosphate was shown to specifically attack dihydroxybenzene derivatives, but only those with adjacent hydroxyl groups. Further, the addition of Mn2+-pyrophosphate to a system containing a flux of O2- and dopamine greatly accelerated the oxidation of dopamine. The oxidation of dopamine by Mn3+ neither produced nor required O2, and Mn3+ was far more efficient than Mn2+, Mn4+ (MnO2), O2-, or H2O2 in oxidizing the catecholamines. A higher oxidation state, Mn(OH)3, formed spontaneously in an aqueous Mn(OH)2 precipitate and slowly darkened, presumably being oxidized to MnO2. Like reagent MnO2, it weakly catalyzed dopamine oxidation. However, both MnO2 preparations showed dramatically increased abilities to oxidize dopamine in the presence of pyrophosphate due to enhancement of the spontaneous formation of the Mn3+ complex. These results strongly suggest that the pathology of manganese neurotoxicity is dependent on the ease with which simple Mn3+ complexes are formed under physiological conditions and the efficiency with which they destroy catecholamines.  相似文献   

8.
An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese.  相似文献   

9.
An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese.  相似文献   

10.
Serum-free culture medium collected from primary monolayer cultures of human articular chondrocytes was found to inhibit human urokinase [EC 3.4.21.31] activity. Although chondrocyte culture medium contained a small amount of endothelial-type plasminogen activator inhibitor which could be demonstrated by reverse fibrin autography, most of the urokinase inhibitory activity of chondrocyte culture medium was shown to be due to a different molecule from endothelial-type inhibitor, since it did not react with a specific antibody to this type of inhibitor. The dominant urokinase inhibitor in chondrocyte culture medium was partially purified by concanavalin A-Sepharose affinity chromatography. The partially purified inhibitor inhibited high-Mr urokinase more effectively than low-Mr urokinase, but no obvious inhibition was detected against tissue-type plasminogen activator, plasmin, trypsin, and thrombin. The inhibitor had an apparent Mr of 43,000 on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and it was unstable to sodium dodecyl sulfate, acid, and heat treatments. Inhibition of urokinase by the inhibitor was accompanied with the formation of a sodium dodecyl sulfate-stable high-Mr complex between them. Inhibition and complex formation required the active site of urokinase. The partially purified inhibitor was thought to be immunologically different from the known classes of plasminogen activator inhibitors, including endothelial-type inhibitor, macrophage/monocyte inhibitor, and protease nexin, since it did not react with specific antibodies to these inhibitors.  相似文献   

11.
The antifungal compound alpha-tomatine, present in tomato plants, has been reported to provide a preformed chemical barrier against phytopathogenic fungi. Fusarium oxysporum f. sp. lycopersici, a tomato pathogen, produces an extracellular enzyme inducible by alpha-tomatine. This enzyme, known as tomatinase, catalyzes the hydrolysis of alpha-tomatine into its nonfungitoxic forms, tomatidine and beta-lycotetraose. The maximal tomatinase activity in the fungal culture medium was observed after 48 h of incubation of germinated conidia at an alpha-tomatine concentration of 20 micrograms/ml. The enzymatic activity in the supernatant was concentrated against polyethylene glycol 35,000, and the enzyme was then purified to electrophoretic homogeneity by a procedure that includes preparative isoelectric focusing and preparative gel electrophoresis as main steps. The purification procedure had a yield of 18%, and the protein was purified about 40-fold. Tomatinase was found to be a monomer of 50 kDa by both native gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The analytical isoelectric focusing of the native tomatinase showed at least five isoforms with pIs ranging from 4.8 to 5.8. Treatment with N-glycosidase F gave a single protein band of 45 kDa, indicating that the 50-kDa protein was N glycosylated. Tomatinase activity was optimum at 45 to 50 degrees C and at pH 5.5 to 7. The enzyme was stable at acidic pH and temperatures below 50 degrees C. The enzyme had no apparent requirement for cofactors, although Co2+ and Mn2+ produced a slight stimulating effect on tomatinase activity. Kinetic experiments at 30 degrees C gave a K(m) of 1.1 mM for alpha-tomatine and a Vmax of 118 mumol/min/mg. An activation energy of 88 kJ/mol was calculated.  相似文献   

12.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

13.
A laccase was isolated from the culture filtrate of basidiomycete Fomitella fraxinea. The enzyme was purified to electrophoretical homogeneity using ammonium sulfate precipitation, anion-exchange chromatography, and gel-filtration chromatography. The enzyme was identified a monomeric protein with a molecular mass of 47 kDa sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel-filtration chromatography, and had an isoelectric point of 3.8. The N-terminal amino acid sequence for the enzyme was ATXSNXKTLAAD, which had a very low similarity to the sequences previously reported for laccases from other basidiomycetes. The optimum and temperature for 2,2'-azino-bis(3-ethylbenzothiazoline- 6-sulfonate) (ABTS) were 3.0 and 70 degrees C, respectively. The enzyme also showed a much higher level of specific activity for ABTS and 2,6-dimethoxyphenol (DMP), where the values of the enzyme for ABTS and 2,6-DMP were 270 and 426 microM, respectively, and the Vmax values were 876 and 433.3 microM/min, respectively. The laccase activity was completely inhibited by L-cysteine, dithiothreitol (DTT), and sodium azide, significantly inhibited by Ni+, Mn+ and Ba+2, and slightly stimulated by K+ and Ca+2.  相似文献   

14.
Bacterial spores are renowned for their longevity, ubiquity, and resistance to environmental insults, but virtually nothing is known regarding whether these metabolically dormant structures impact their surrounding chemical environments. In the present study, a number of spore-forming bacteria that produce dormant spores which enzymatically oxidize soluble Mn(II) to insoluble Mn(IV) oxides were isolated from coastal marine sediments. The highly charged and reactive surfaces of biogenic metal oxides dramatically influence the oxidation and sorption of both trace metals and organics in the environment. Prior to this study, the only known Mn(II)-oxidizing sporeformer was the marine Bacillus sp. strain SG-1, an extensively studied bacterium in which Mn(II) oxidation is believed to be catalyzed by a multicopper oxidase, MnxG. Phylogenetic analysis based on 16S rRNA and mnxG sequences obtained from 15 different Mn(II)-oxidizing sporeformers (including SG-1) revealed extensive diversity within the genus Bacillus, with organisms falling into several distinct clusters and lineages. In addition, active Mn(II)-oxidizing proteins of various sizes, as observed in sodium dodecyl sulfate-polyacrylamide electrophoresis gels, were recovered from the outer layers of purified dormant spores of the isolates. These are the first active Mn(II)-oxidizing enzymes identified in spores or gram-positive bacteria. Although extremely resistant to denaturation, the activities of these enzymes were inhibited by azide and o-phenanthroline, consistent with the involvement of multicopper oxidases. Overall, these studies suggest that the commonly held view that bacterial spores are merely inactive structures in the environment should be revised.  相似文献   

15.
Microorganisms catalyze the formation of naturally occurring Mn oxides, but little is known about the biochemical mechanisms of this important biogeochemical process. We used tandem mass spectrometry to directly analyze the Mn(II)-oxidizing enzyme from marine Bacillus spores, identified as an Mn oxide band with an in-gel activity assay. Nine distinct peptides recovered from the Mn oxide band of two Bacillus species were unique to the multicopper oxidase MnxG, and one peptide was from the small hydrophobic protein MnxF. No other proteins were detected in the Mn oxide band, indicating that MnxG (or a MnxF/G complex) directly catalyzes biogenic Mn oxide formation. The Mn(II) oxidase was partially purified and found to be resistant to many proteases and active even at high concentrations of sodium dodecyl sulfate. Comparative analysis of the genes involved in Mn(II) oxidation from three diverse Bacillus species revealed a complement of conserved Cu-binding regions not present in well-characterized multicopper oxidases. Our results provide the first direct identification of a bacterial enzyme that catalyzes Mn(II) oxidation and suggest that MnxG catalyzes two sequential one-electron oxidations from Mn(II) to Mn(III) and from Mn(III) to Mn(IV), a novel type of reaction for a multicopper oxidase.  相似文献   

16.
The noble shift in open-circuit potential exhibited by microbially colonized stainless steel (ennoblement) was investigated by examining the relationship among surface colonization, manganese deposition, and open-circuit potential for stainless steel coupons exposed to batch cultures of the manganese-depositing bacterium Leptothrix discophora. Open-circuit potential shifted from -100 to +330 mV(infSCE) as a biofilm containing 75 nmol of MnO(infx) cm(sup-2) formed on the coupon surface but changed little further with continued MnO(infx) deposition up to 270 nmol cm(sup-2). Increased open-circuit potential corresponded to decreasing Mn(II) concentration in solution and to increased MnO(infx) accumulation and attached cell density on the coupon surfaces. MnO(infx) deposition was attributable to biological activity, and Mn(II) was observed to enhance cell attachment. The experimental results support a mechanism of ennoblement in which open-circuit potential is fixed near +350 mV(infSCE) by the cathodic activity of biomineralized MnO(infx).  相似文献   

17.
Human rheumatoid synovial cells in culture stimulated with the conditioned culture medium of rabbit macrophages secrete three distinct latent metalloproteinases. One of them, a proteinase that digests proteoglycan and other connective tissue matrix components, was purified as two active forms after activation with 4-aminophenylmercuric acetate. The two forms were homogeneous on sodium dodecyl sulfate-gel electrophoresis with Mr = 45,000 and Mr = 28,000, whereas the latent precursor was estimated to have Mr = 51,000 by gel permeation chromatography. Both active enzymes had optimal activity at pH 7.5-7.8 and were inhibited by EDTA and 1,10-phenanthroline but not by inhibitors for cysteine, serine, or aspartic proteinases. Removal of Ca2+ from the enzyme solution resulted in a complete loss of activity that could be fully restored by the addition of 1 mM Ca2+. The activity of the apoenzyme was restored by the addition of 0.5 mM Zn2+, 5 mM Co2+, or 5 mM Mn2+ in the presence of Ca2+ but not by each metal ion alone. The identical digestion patterns of reduced, carboxymethylated protein substrates indicated that both active forms of the enzyme have the same substrate specificity. The enzyme degraded cartilage proteoglycans, type I gelatin, type IV collagen, laminin, and fibronectin, and removed the NH2-terminal propeptides from chick type I procollagen. This enzyme may play a role in the normal turnover of the connective tissue matrix as well as in the joint destruction of chronic synovitis.  相似文献   

18.
A glycoprotein ATPase in cholinergic synaptic vesicles of Torpedo electric organ was solubilized with octa-ethylene glycol dodecyl ether detergent. Study of potential stabilizing factors identified crude brain phosphatidylserine, glycerol, dithiothreitol, and protease inhibitors as of value in maintaining activity. The ATPase was purified from the solubilized, stabilized material by glycerol density gradient band sedimentation velocity ultracentrifugation, and hydroxylapatite, wheat germ lectin affinity, and size exclusion chromatographies. The pure ATPase had a specific activity of about 37 mumol ATP hydrolyzed/min/mg protein. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified material typically exhibited three polypeptides of molecular masses 110, 104, and 98 kilodaltons (kDa) and a fourth diffuse polypeptide of 60 kDa. This composition suggests that the ATPase is a member of the P-type, or phosphointermediate-forming, family, but it was shown to be distinct from the ouabain-sensitive Na+,K+- and CA2+-stimulated Mg2+-ATPases. The purified vesicle enzyme was rapidly phosphorylated by [gamma-32P]ATP on about 14% of the subunits with molecular weights of 98,000-110,000. About 16% of the ATPase was phosphorylated in whole-vesicle ghosts in a manner consistent with formation of a phosphointermediate, thus confirming the P-type nature of this enzyme.  相似文献   

19.
The trichostrongylid nematode Haemonchus contortus released a hyaluronic acid-degrading enzyme during in vitro development from the third (L3) to fourth (L4) larval stage. The enzyme did not degrade chondroitin sulfate A. Enzyme activity was optimal between pH 4.0 and 6.0, and the enzyme was inhibited by high concentrations of NaCl; the divalent cations Cu2+, Zn2+, Ca2+, and Mn2+ were not inhibitory. The hyaluronidase had a molecular mass estimated at 57 kDa by sucrose density gradient centrifugation and at 111 kDa by substrate sodium dodecyl sulfate polyacrylamide gel electrophoresis (reducing and nonreducing conditions), suggesting the formation of a dimer during the electrophoretic separation conditions. The level of hyaluronidase released during in vitro development peaked between 24 and 48 hr in culture and then gradually decreased, with little or no activity present in the 168-hr culture fluid. The enzyme was not detected in culture fluid from 24-hr incubations of either the mid-L4 stage (obtained from sheep 7 days postinfection) or the adult stage (obtained from sheep 30-35 days postinfection). The temporal expression of the hyaluronidase suggested a role for this enzyme in the early stages of the L3-L4 developmental process.  相似文献   

20.
S. Kohring  J. Wiegel    F. Mayer 《Applied microbiology》1990,56(12):3798-3804
The subunit composition of the extracellular complex from Clostridium thermocellum was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Twenty-six bands, representing proteins with apparent molecular sizes ranging from 37,500 to 185,000 Da, could be detected by silver staining. Cultivation of the bacteria with the substrate Avicel, Sigma cellulose, Solka floc, or cellobiose as the carbon source had no influence on the number of detectable protein bands. By activity staining with the substrate carboxymethyl cellulose or xylan added to the SDS-polyacrylamide gels, 15 of the 26 bands exhibited endoglucanase activity and 13 showed xylanase activity. In 8 of the 26 bands, both activities could be found. As minor activities, β-glucosidase, β-xylosidase, β-galactosidase, and β-mannosidase activities could be demonstrated in the cellulase complex. Upon measuring the release of para-nitrophenol (PNP) from PNP-cellobioside and determining the amount of glucose formed, the presence of exoglucanase activity was indicated. Upon glycoprotein staining of SDS-polyacrylamide gels, 14 of the 26 bands reacted positive, indicating the glycoprotein nature of the respective proteins. Four proteins (apparent molecular sizes, 58,000, 72,500, 94,000, and 110,000 Da) could be enriched from the originally bound cellulase complex by preparative SDS-PAGE. The two smaller proteins exhibited xylanase activity, whereas the 94,000-Da protein had endo- and exoglucanase activity, and the 110,000-Da protein degraded PNP-pyranosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号