首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histophysiology of both brown and yellow paracloacal glands of control animals from wild populations was analyzed in the breeding and non-breeding seasons and in oophorectomized animals. The effect of estrogens on the scent glands of female Metachirus nudicaudatus was investigated. Radioimmunoassay indicated that estradiol levels in the breeding season were high, while those in the non-breeding season and oophorectomized had minute amounts. No apparent change in gland volume was observed in the various animal groups. Light microscopy showed a wide variation in the number of layers of the holocrine secretory epithelium of the major (brown) gland between the breeding (1–7) and non-breeding season (8–19) and in oophorectomized (8–18) animals. The minor (yellow) gland showed the most evident variation: the holocrine epithelium was restricted to the basal layer in the breeding season, but was restored and exhibited up to eight layers in the non-breeding season and in oophorectomized females. The mean cellular area of the secretory holocrine epithelium in the breeding season was smaller than in the non-breeding period and in castrated animals. On the other hand, the mean cellular areas of tubular glands inserted in both yellow and brown glands in the breeding season were larger than those in the non-breeding season and after castration. The results consistently indicate that the glandular volumes of yellow and brown glands do not depend on estrogens, whereas the holocrine secretory epithelium and tubular glands of both are estrogenic modulation.  相似文献   

2.
We studied the morphological characteristics and seasonal changes of the bulbourethral gland of Eidolon helvum in a typical African tropical environment. Forty-eight bulbourethral glands were examined using gross anatomical, histological, histochemical, and ultrastructural techniques during the early rainy, late rainy, and peak dry seasons. The pear-shaped bilateral bulbourethral glands were located extra-abdominally in the inguinal region. Trabeculae from the capsule divided the parenchyma into numerous lobules of tubuloalveolar glandular acini. The mucosa was covered by a simple columnar epithelium consisting up of principal secretory cells, columnar dense cells and basal cells, which were progressively pronounced during the dry season. The principal cells contained eosinophilic granules, which were PAS positive while the dense cells did not show affinity for the stains. The mean gross weights, acini diameters, and epithelial heights were greater during the rainy season than the dry season. Ultrastructural evaluation showed that the cytoplasm of the principal cells contained well-developed Golgi complexes, rough endoplasmic reticulum, mitochondria, and secretory vesicles of varying electron densities and sizes. The secretory vesicles were numerous during the early rainy season, decreased during the late rainy season and were scanty during the peak dry season. The simple columnar epithelium observed during the rainy season was replaced by an undefined stratified epithelium during the dry season, and this was associated with cellular degenerations and regenerations. In conclusion, E. helvum has a typical mammalian bulbourethral gland, with a unique cell type, the dense cell whose functions are not well-understood. The gland exhibits cyclical seasonal variation in structure and secretory activity; being active during the early rainy season (breeding season), and showing the lowest activity during the dry season (non-breeding season). Glandular epithelial cell renewal occurs during the dry season in preparation for the next breeding season.  相似文献   

3.
In order to elucidate the relationship between androgens and the function of the muskrat (Ondatra zibethicus) scented glands during the breeding season, we investigated immunolocalization of steroidogenic enzymes P450scc, 3βHSD and P450c17 in the muskrat testes and scented glands. Nine adult muskrats were obtained in March (n=3), May (n=3) and July (n=3) 2010. Steroidogenic enzymes were immunolocalized using polyclonal antisera raised against bovine adrenal P450scc, human placental 3βHSD and porcine testicular P450c17. Histologically, all types of spermatogenic cells including mature-phase spermatozoa in seminiferous tubules were observed in all testes. Glandular cells, interstitial cells, epithelial cells and excretory tubules were identified in scented glands during the breeding season. P450scc, 3βHSD and P450c17 were only identified in Leydig cells during the breeding season; P450scc and P450c17 were observed in glandular cells of scented glands, however, 3βHSD was not found in scented glands during the breeding season. These novel findings provide the first evidence showing that scented glands of the muskrats are capable of locally synthesizing androgens and androgens acting via an endocrine, autocrine or paracrine manner may play an important role in scented gland function during the breeding season.  相似文献   

4.
《Comptes rendus biologies》2019,342(1-2):27-34
The goal of this study was to evaluate for the first time the expression of the androgen receptors (AR) in Harderian glands (HG) of the male Meriones lybicus in relation to the reproductive cycle. Six male Harderian glands of the resting period and 6 of the breeding period were collected. The animals were trapped in the desert of Béni Abbès (Algeria). The morphology of the Harderian glands was studied by light microscopy and morphometry, whereas the expression of the androgen receptors was assessed and quantified based on immunohistochemistry techniques. We have shown that the Harderian glands of Meriones libycus are tubuloalveolar glands with wide lumen. The glandular epithelium is composed of two types of cells (types I and II) in the resting season and three types of cells (types I, II and III) in the breeding season. These three types of cells differ in size and shape. Type-I cells have a prismatic shape, an acidophilic cytoplasm, and small lipidic vacuoles, whereas type-II ones are pyramidal in shape, with basophilic cytoplasm. Type-III cells resemble those of type I, and so they are prismatic in shape and have an acidophilic cytoplasm with larger lipidic vacuoles. The immunoreactivity of type-I and type-III cells was mainly cytoplasmic and the intensity of the immunostaining was significantly higher during the breeding season. Among other functions, the Harderian gland seems to be involved in the production of pheromones under the effect of androgens.  相似文献   

5.
Ultrastructural changes of the parathyroid glands of isoproterenol-treated golden hamsters were investigated. Many chief cells in the parathyroid glands after 5 and 10 minutes of administration of isoproterenol contain well-developed Golgi complexes and granular endoplasmic reticulum, numerous prosecretory granules, and many secretory granules in the peripheral cytoplasm as compared with the control animals. Many chief cells in the parathyroid glands after 1, 3, 6 and 12 hours of administration have poorly-developed Golgi complexes, granular endoplasmic reticulum, many secretory granules and numerous lipid droplets as compared with the control animals. The morphology of the parathyroid gland after 30 minutes and 24 hours of administration resembles that of the control animals. It is considered that isoproterenol affects the secretory activity of the parathyroid gland.  相似文献   

6.
Ultrastructural changes of the parathyroid glands of melatonin-treated golden hamsters were studied. Many chief cells in the parathyroid glands after 1 hour of administration of melatonin contained poorly-developed Golgi complexes associated with a few prosecretory granules and numerous lipid droplets as compared with those of the control animals. The morphology of the parathyroid glands after 5 hours of administration resembled that of the control animals. Many chief cells in the parathyroid glands after 24 hours of administration had well-developed Golgi complexes and cisternae of the granular endoplasmic reticulum, numerous prosecretory granules, a few lipid droplets and many secretory granules in the peripheral cytoplasm as compared with those of the control animals. The ultrastructure of the parathyroid glands after 48 hours of administration was almost similar to that of the control animals. It is considered that melatonin affects the secretory activity of the parathyroid gland.  相似文献   

7.
Histologic examination of ovaries from a non-migratory population of scrub jays (Aphelocoma coerulescens) disclosed a marked annual cycle in the incidence of atresia. Atretic follicles became more common as the nesting season progressed and were most abundant immediately after the cessation of breeding. Atresia involved a dissociation of granulosa cells and movement of these cells into the follicle. Subsequently, granulosa cells showed steatogenesis and ultimately disappeared simultaneously with the invasion of the follicle by ex-thecal gland cells. The data suggest that the diverse histology of avian atretic follicles reflects different stages in the process of atresia rather than multiple origins. Ovarian stromal glands apparently arise both from ex-thecal gland cells of atretic follicles and stromal connective tissue. A possible secretory role of atretic follicles is considered.  相似文献   

8.
Two types of exocrine rosette glands (called type A and type B), located in the gill axes of the grass shrimp Palaemonetes pugio, are described. The type A glands are embedded within the longitudinal median septum of the gill axes, whereas the type B glands typically project into the efferent hemolymph channels of the gill axes. Although both glands have certain common characteristics (i.e., a variable number of radially arranged secretory cells, a central intercalary cell, and a canal cell that forms the cuticular ductule leading to the branchial surface), they differ in the following respects. The type B gland is innervated, but the type A gland is not; axonal processes, containing both granular (ca. 900–1300 Å) and agranular (ca. 450–640 Å) vesicles, occur at a juncture between adjacent secretory cells and the central cell of the type B gland. The secretory cells of type A and type B glands differ in their synthetic potential and membrane specializations. These differences are more pronounced in well-developed, mature glands, most frequently encountered in larger (24–28 mm, total length) grass shrimp, than in the underdeveloped, immature glands that are most abundant in smaller (14–18 mm, total length) grass shrimp. Thus, in mature glands, the secretory cells of the type A rosette glands are characterized by extensive RER, abundant Golgi, and numerous secretory granules, whereas the secretory cells of the type B gland are characterized by extensively infolded and interdigitated basal plasmalemmas and by the presence of numerous mitochondria. In general, both types of glands exhibit increased secretory activity soon after ecdysis. The central and canal cells in both glands seem to have a role in the modification of the secreted materials. The possible functions assigned to the type A gland and the type B gland include phenol-oxidase secretion and osmoregulation, respectively.  相似文献   

9.
We recently showed that mammary glands contain a novel class of calcium-binding proteins (CBPs) that bind to membranes in a calcium-dependent manner. We have also established that these mammary CBPs are equivalent to the calelectrins and calpactin I/p36. Since it has been suggested that these proteins might be involved in exocytosis, we examined mammary glands for these CBPs during secretory differentiation. Immunohistochemical examination showed glands from virgin animals to be rich in calelectrins and calpactin I/p36, while glands from lactating animals contained little immunoreactive material. In addition, silver-staining and immunoblot estimation of the CBPs in lysates from collagenase harvested secretory epithelia showed these proteins to be significantly reduced compared to nonsecretory epithelia. Close examination of the CBP immunoreactive cells of the mammary gland shows that ductal cells are prominent in their staining and that the immunoreactive material is associated with the cell surface. Also, in juvenile glands the myoepithelial stem cells (cap cells) of the elongating end bud are devoid of the CBPs. In contrast to the in vivo data, epithelia cultivated on collagen gels demonstrate comparable levels of the CBPs in both nonsecretory and secretory monolayers. The in vivo data indicate that the CBPs are developmentally regulated during mammary gland differentiation such that secretory epithelia are essentially devoid of these novel proteins. Furthermore, a role for calelectrin and calpactin I/p36 in exocytotic casein secretion is questioned.  相似文献   

10.
Lu L  Zhang H  Lv N  Ma X  Tian L  Hu X  Liu S  Xu M  Weng Q  Watanabe G  Taya K 《Zoological science》2011,28(10):727-732
Aromatase cytochrome P450 (P450arom) is an enzyme that catalyzes the conversion of androgen to estrogen. Expression of P450arom in extra-gonadal sites and locally-synthesized estrogen play an important role in physiological conditions. The purpose of this study was to investigate the cellular immunolocalization of androgen receptor (AR), P450arom, estrogen receptor alpha (ERa) and estrogen receptor beta (ERβ) in muskrat scent glands during the breeding season. Histological observation and immunohistochemistry of AR, P450arom, ERa and ERβ were performed in the muskrat scent glands. In addition, total proteins were extracted from scent glandular tissues in the breeding season and were used for Western blotting analysis for AR, P450arom, ERα and ERβ. Histologically, glandular cells, interstitial cells, epithelial cells of the excretory duct and the excretory tubules were identified in the muskrat scent glands during the breeding season. AR was only observed in glandular cells of scent glands; P450arom was expressed in glandular cells and epithelial cells of the excretory duct; ERα was found in glandular cells, interstitial cells and epithelial cells of the excretory duct, whereas ERβ was present in glandular cells and epithelial cells of the excretory duct. Also, the positive signals of AR, P450arom, ERα and ERβ by Western blotting were all observed in scent glandular tissues. These results suggested that the scent gland is the target organ of androgens and estrogens, and that estrogens may play an important autocrine or paracrine role in glandular function of the muskrats.  相似文献   

11.
A pair of rosette glands (one of the tegumental glands in crustaceans) is present at the root of the dorsal spine of the thorax in mature embryos of the estuarine crab Sesarma haematocheir. Each rosette gland is spherical, 45-50 microm in diameter. This gland consists of three types of cells: 18-20 secretory cells, one central cell, and one canal cell. The secretory cells are further classified into two types on the basis of the morphology of secretory granules. There are 17-19 a cells, and only one b cell per rosette gland. An a cell contains spherical secretory granules of 2-3 microm in diameter. The granules are filled with highly electron-dense materials near the nucleus but have lower electron-density near the central cell. The secretory granules contained in the b cell have an irregular shape and are 1-1.5 microm in diameter. The density of the materials in the granules is uniform throughout the cytoplasm. The secretory granules contained in both the a and b cells are produced by the rough endoplasmic reticulum. Materials in the granules are exocytotically discharged into the secretory apparatus inside the secretory cell, sent to the extracellular channels in the central cell, and secreted through the canal cell. The rosette gland can be distinguished from the epidermal cells 2 weeks after egg-laying and the gland matures just before hatching. Materials produced by this gland are secreted after hatching and secretion continues through five stages of zoeal larvae. These rosette glands were never found in the megalopal larva. Rosette glands are found in the embryos of Sesarma spp. and Uca spp. In other crabs, tegumental glands are also found at the same position as in the embryo of S. haematocheir, but the fine structure of their glands is largely different from that of the rosette gland. On the basis of the morphology of secretory cells (a-g cell types), the tegumental glands of a variety of crab embryos can be classified into four types, including rosette glands (type I-IV). The function of these tegumental glands is not yet known, but different types of the gland seem to reflect the phylogeny of the crabs rather than differences of habitat.  相似文献   

12.
The pelvic, pectoral, anal and dorsal fins of mature male, female and immature male Lipophrys pholis (L.) were examined by light microscopy for the presence of club glands. All fins except the dorsal showed a highly stratified epidermis and a thick cuticle. Club glands were present on the dorsal fin of mature male fisH but only during the breeding season. The development and decline of the club glands corresponds to the period of gonadal build-up and spawnout. Each club gland comprises several thousand bundles ofcolumnar cells. The columnar cells surround acentral pore which opens to the outside through a layer of Malpighian cells. The substance produced by the gland includes mucopolysacchdride. The function of the secretion is unknown and is discussed in relation to studies on similar glands in several Mediterranean blenniids.  相似文献   

13.
Rabbit submandibular glands produce secretions involved in olfactory communication. The histology of these glands and their secretory activity are: sexually dimorphic; vary across the female reproductive cycle; and are modified by gonadectomy. This suggests that gonadal steroids regulate the structure and function of such glands. To further support this idea we assessed by immunocytochemistry the presence of estrogen and progesterone receptors in male and female rabbit submandibular glands. Immunoreactivity was detected only in the nucleus of acini cells. The number of estrogen receptor-immunoreactive cells/field varied among estrus (26 +/- 6; mean +/- S.E.), ovariectomized (19 +/- 2), and ovariectomized-estrogen-treated animals (13 +/- 3). Intact males showed a significantly smaller number of estrogen receptor-immunoreactive cells/field (12 +/- 1) than estrous females. Interestingly, progesterone receptor-immunoreactive cells were more abundant in estrous (32 +/- 7) than in ovariectomized animals (7 +/- 1). Estradiol benzoate (5 micrograms daily for 5 days) increased the number of progesterone receptor-immunoreactive cells/field in ovariectomized females (17 +/- 1). Intact males showed fewer progesterone receptor-immunoreactive cells/field (16 +/- 2) than estrous females. Results show that the rabbit submandibular gland is a target for estrogen and progesterone and support the idea that these hormones participate in regulating the physiology of this gland.  相似文献   

14.
The cloacal gland of the hagfish, Eptatretus burgeri, was studied histologically in four seasons. Before the breeding season (spring and summer) the male cloacal gland was larger than the female cloacal gland. The gland was largest in the males with a more mature testis. After the breeding season (autumn and winter) there was no sex difference in the size of the cloacal gland. The cloacal gland consists of mucus and thread cells, as do the lateral slime glands. The sperm may be entangled within slime in the cloacal gland and be shed outside as a slimy sperm mass. Such a slimy sperm mass may play an important role in reproduction of the hagfish.  相似文献   

15.
The thumb pad is one of the most common secondary sexual characteristics in frogs. Although it is known that amphibian skin has affinity for several lectins, there is no report regarding lectin‐binding affinity of the thumb pad or its structural components. This study investigated localization and seasonal variation of specific carbohydrate moieties of glycoconjugates in both the epidermal and dermal components of the frog thumb pad at the light microscopic level using lectin histochemistry. The study consisted of four seasonal groups of the frog species, Pelophylax ridibundus (Synonym of Rana ridibunda): active, prehibernating, hibernating and posthibernating. Four horseradish peroxidase conjugated lectins were employed. It was found that dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA), and ulex europaeus (UEAI) gave positive reactions in both epidermal layers and breeding glands. These three lectins bound specific secretory cells in the breeding glands, and the distribution of the cells and epithelial lectin reactions exhibited seasonal changes. In addition, UEA‐I and peanut agglutinin (PNA) showed an affinity in granular glands and the granular zone of mixed glands. Generally, epidermal lectin binding showed dense affinity during the posthibernation period. DBA, UEA‐I, and WGA‐specific cells in the mucous gland decreased gradually until the posthibernation period. These findings suggest that differences of lectin binding in the thumb pad may be related to functional activities and, thus, seasonal adaptations. Moreover, the presence of specific lectin‐binding cells in the breeding glands indicated that they consisted of heterogeneous secretory cell composition or that the cells were at different secretory stages. J. Morphol. 275:76–86, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Silk spinning is widely-spread in trombidiform mites, yet scarse information is available on the morphology of their silk glands. Thus this study describes the fine structure of the prosomal silk glands in a small parasitic mite, Ornithocheyletia sp. (Cheyletidae). These are paired acinous glands incorporated into the podocephalic system, as typical of the order. Combined secretion of the coxal and silk glands is released at the tip of the gnathosoma. Data obtained show Ornithocheyletia silk gland belonging to the class 3 arthropod exocrine gland. Each gland is composed of seven pyramidal secretory cells and one ring-folded intercalary cell, rich in microtubules. The fine structure of the secretory cells points to intensive protein synthesis resulted in the presence of abundant uniform secretory granules. Fibrous content of the granules is always subdivided into several zones of two electron densities. The granules periodically discharge into the acinar cavity by means of exocytosis. The intercalary cell extends from the base of the excretory duct and contributes the wall of the acinar cavity encircling the apical margins of the secretory cells. The distal apical surface of the intercalary cell is covered with a thin cuticle resembling that of the corresponding cells in some acarine and myriapod glands. Axon endings form regular synaptic structures on the body of the intercalary cell implying nerve regulation of the gland activity.  相似文献   

17.
The epididymis of the European mole (Talpa europaea) was studied by light and electron microscopy. In the sexually active animal, spermatozoa mature during their passage through the epididymis and the structure of the cells lining the duct suggests a clear regional division into initial, middle and terminal segments. Numerous intra-epithelial vesicles were present in the distal part of the middle segment of sexually active moles and the lining epithelium in the terminal segment appeared to be secretory. Variation in the sensitivity of different regions of the epididymis to androgens was apparent: the principal cells of the initial segment were morphologically active only during the peak of the breeding season in spring, while the cells of the terminal segment became active earlier and remained so for longer. During sexual regression, many autophagic vacuoles were found in the principal cells, and these became transformed into lipofuscin pigment granules. Cells heavily laden with these granules appeared concurrently in the lining epithelium. It is suggested that such cells may be involved in the regression of principal cells by means of heterophagic activity. A similar situation was also observed, but to a lesser extent, at the beginning of the breeding season. Outside the breeding season, the organelles of the principal cells were poorly developed throughout the epididymis, and lipofuscin pigment granules remained in the principal and basal cells of adults. Such granules were seldom seen in immature animals.  相似文献   

18.
The mucous gland of the red-spotted newt, Notophthalamus viridescens viridescens, Rafinesque was examined by histochemical and ultrastructural techniques and its cytological responses to various hormonal conditions were studied. Its secretory epithelial cells produce and release in merocrine fashion a neutral, unsulphated mucosubstance. The secretory epithelium is bounded peripherally by a thin, but apparent non-functional, myo-epithelium. The duct of this mucous gland consists of a single keratinized tubular cell that extends from the neck region of the gland to the surface of the epidermis. Mucous secretion is absent or greatly reduced on the skins of newts maintained under laboratory conditions for a few weeks but reappears after injection of ovine prolactin. Mucous glands in laboratory conditioned animals show a 4-fold increase in volume brought about by the engorgement of their epithelial cells with secretory granules. Ovine prolactin reduces the volume of the glands to unconditioned levels with a corresponding reduction in granular content, suggesting that prolactin functions in the release of the granules. This view is reinforced by the findings that autotransplantation of the pituitary gland prevents the conditioning effect and that glandular volume increases in auto-transplanted animals given ergocornine. Granular accumulation begins also in hypophysectomized newts but ceases after a week, indicating the need for some hypophyseal factor in the synthesis as well as the release of the granules. Ovine prolactin restores mucous glands of hypophysectomized newts to the unconditioned state. Contrary to earlier findings, ovine prolactin induces a reduction in the volume of the mucous gland in thyroidectomized newts.  相似文献   

19.
Anatomy and ultrastructure of prosomal salivary glands in the unfed water mite larvae Piona carnea (C.L. Koch, 1836) were examined using serial semi-thin sections and transmission electron microscopy. Three pairs of alveolar salivary glands shown are termed lateral, ventro-lateral and medial in accordance with their spatial position. These glands belong to the podocephalic system and are situated on the common salivary duct from back to forth in the above mentioned sequence. The arrangement of the medial glands is unusual because they are situated one after another on the medial (axial) body line, therefore they are termed anterior and posterior medial glands. The secretory duct of the anterior medial gland mostly turns right, and the duct of the posterior gland turns left. The salivary glands are located in the body cavity partly inside the gnathosoma and in the idiosoma in front of the brain (synganglion). Each gland is represented by a single acinus (alveolus) and is composed of several cone shaped secretory cells arranged around the large central (intra-acinar) cavity with the secretory duct base. The cells of all glands are filled with secretory vesicles of different electron density. The remaining cell volume is occupied by elements of rough endoplasmic reticulum, and the membrane enveloping vesicles may have ribosomes on its external surface. Large nuclei provided with large nucleoli occupy the basal cell zones. The pronounced development of the prosomal salivary glands indicates their important role in extra-oral digestion of water mite larvae.  相似文献   

20.
The esterase activity in the sweat glands of Brahman (B), Brahman crossbred (BX) and Shorthorn (S) steers was studied in animals exposed to low heat loads while grazing. The percentage of sweat glands containing esterase in the secretory cells of the fundus differed between genotypes and ranked in order of their heat tolerance, i.e., B greater than BX greater than S. Esterase activity in some of those secretory cells was reduced in B bulls by acute exposure to high air temperatures in a climate chamber. While the significance of the esterase-containing cells in the fundus of the bovine sweat gland is uncertain, the results suggest that they could represent the resting or relatively inactive stage of the secretory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号