首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimates of allele frequencies at six polymorphic loci were collected over eight generations in two populations of Euphydryas editha. We have estimated, in addition, the effective population size for each generation for both populations with results from mark-recapture and other field data. The variation in allele frequencies generated by random genetic drift was then studied using computer simulations and our direct estimates of effective population size. Substantial differences between observed values and computer-generated expected values assuming drift alone were found for three loci (Got, Hk, Pgi) in one population. These observations are consistent with natural selection in a variable environment.  相似文献   

2.
Westslope cutthroat trout (Oncorhynchus clarki lewisi, Salmonidae) are native to the upper Columbia, Missouri, and South Saskatchewan river drainages of western North America and are at the northern periphery of their range in southeastern British Columbia, Canada. We examined geographical variation in allele frequencies at eight microsatellite loci in 36 samples of westslope cutthroat trout from British Columbia to assess levels of population subdivision and to test the hypothesis that different habitat types (principally mainstem vs. above migration barrier habitats) would influence levels of genetic diversity, genetic divergence among populations, and attainment of equilibrium between gene flow and genetic drift. Across all samples, the mean number of alleles per locus was 3.9 and mean expected heterozygosity was 0.56. Population subdivision was extensive with an overall Fst (theta) of 0.32. Populations sampled above migration barriers had significantly fewer alleles, lower expected heterozygosity, but greater average pairwise Fst than populations sampled from mainstem localities. We found evidence for isolation-by-distance from a significant correlation between genetic distance and geographical distance (r = 0.31), but the pattern was much stronger (r = 0.51) when above barrier populations and a population that may have been involved in headwater exchanges were removed. By contrast, isolation-by-distance was not observed when only above barrier populations were tested among themselves. Our data support the maintenance of separate demographic management strategies for westslope cutthroat trout inhabiting different river systems and illustrate how differing habitat structure (e.g. presence of migration barriers) may influence patterns of biodiversity and gene flow-drift equilibrium.  相似文献   

3.
Camellia japonica is a widespread and morphologically diverse tree native to parts of Japan and adjacent islands. Starch gel electrophoresis was used to score allelic variation at 20 loci in seeds collected from 60 populations distributed throughout the species range. In comparison with other plant species, the level of genetic diversity within C. japonica populations is very high: 66.2% of loci were polymorphic on average per population, with a mean number of 2.16 alleles per locus; the mean observed and panmictic heterozygosities were 0.230 and 0.265, respectively. Genotypic proportions at most loci in most populations fit Hardy-Weinberg expectations. However, small heterozygote deficiencies were commonly observed (mean population fixation index = 0.129). It is suggested that the most likely cause of the observed deficiencies is population subdivision into genetically divergent subpopulations. The overall level of population differentiation is greater than is typically observed in out-breeders: The mean genetic distance and identity (Nei's D and I) between pairs of populations were 0.073 and 0.930, respectively, and Wright's Fst was 0.144. Differences among populations appeared to be manifested as variation in gene frequencies at many loci rather than variation in allelic composition per se. However, the patterns of variation were not random. Reciprocal clinal variation of gene frequencies was observed for allele pairs at six loci. In addition, principal components analysis revealed that populations tended to genetically cluster into four regions representing the geographic areas Kyushu, Shikoku, western Honshu, and eastern Honshu. There was a significant relationship between genetic and geographic distance (r = 0.61; P < 0.01). Analysis of variance on allozyme frequencies showed that there was approximately four times as much differentiation among populations within regions, as among regions. It is likely that the observed patterns of population relationships result from the balance between genetic drift in small subpopulations and gene flow between them.  相似文献   

4.
The allele frequencies at ten polymorphic loci are described from 31 Bufo marinus populations in the Moreton Bay region in southeastern Queensland, Australia and the variation of these is found to be non-random in all cases. The pattern of non-randomness varies among loci, being clinal in two instances. The allele frequencies at the same ten loci are also described for 12 populations sampled from throughout B. marinus' Australian range. The frequency variation on this larger geographical scale is non-random at all but two loci (Mpi and Hbdh) and also varies among loci, in this case being clinal in four instances. In both cases, the patterns of variation are most reasonably explained as having resulted from genetic drift occurring during the recent range expansion which B. marinus is known to have experienced in Australia. It seems that natural selection has played little, if any, role in generating the observed gene frequency patterns. These results emphasize the need for caution in interpreting geographical patterns of variation. They show that even when clinal patterns exist at some loci but not at others, one cannot conclude that the patterns result from natural selection, unless the demographic histories of the studied populations are known and are inconsistent with the alternative hypothesis that the patterns result from genetic drift.  相似文献   

5.
Eucalyptus camaldulensis Dehnh. is the most widely planted eucalypt in the tropics. Natural populations are riparian and sampling strategies for breeding programmes have assumed that gene flow among drainage basins is limited. RFLP variation, within and among 31 populations from river systems across northern Australia, was analysed to test this hypothesis. To allow comparisons within and between river systems, trees were sampled from up to three populations per river system. Allele frequencies were correlated with longitude for more than half the 33 RFLP loci surveyed. Genetic identity was greatest between populations in closest geographic proximity, irrespective of river system, suggesting that sampling strategies for breeding programmes should be based on geographic distance rather than river system. The level of genetic variation was similar throughout the geographic range examined (mean H(E) = 0.49). However, there was evidence of a barrier to gene flow between populations in the east and west of the species range. The RFLP data support morphological evidence of hybridisation between E. camaldulensis and E. tereticornis Sm. in several populations in northeast Queensland and the genetic divergence of E. camaldulensis subsp. simulata Brooker and Kleinig.  相似文献   

6.
Singh RS  Rhomberg LR 《Genetics》1987,117(2):255-271
A study of genic variation in natural population of D. melanogaster was undertaken (1) to obtain a better estimate of heterozygosity by sampling a relatively large number of gene loci and (2) to identify different groups of polymorphic loci whose variation patterns might suggest different kinds of selection forces. A total of 117 gene loci (coding for 79 enzymes and 38 abundant proteins) were studied in 15 geographically distant populations originating from different continents. The findings of this study are as follows: (1) of the 117 gene loci studied, 61 are polymorphic and 56 are uniformly monomorphic everywhere. (2) An average population is polymorphic for 43% of its gene loci and an average individual is heterozygous for 10% of its gene loci. These estimates are remarkably similar among populations. (3) The average within-locality heterozygosity (H(S)) for polymorphic loci is uniformly distributed over the range of heterozygosity observed; i.e. , given that a locus has any local variation, it is nearly as likely to have a lot as a little. (4) The distribution of F(ST) (fixation index) is strongly skewed, with a prominent mode at 8-10% and a long tail of high values reaching a maximum of 58%. Two-thirds of all loci fall within the bell-shaped distribution centered on an F(ST) of 8-10%, a result compatible with the notion that they are experiencing a common tendency toward small interlocality differences owing to extensive gene flow among populations. (5) The distribution of total heterozygosity (H(T)) has a prominent bimodal distribution. The lower mode consists of loci with single prominent allele and a few uncommon ones and the upper mode consists of clinally varying loci with a high F(ST ) (e.g., Adh and G6-pd), loci with many alleles in high frequency (e.g., Ao and Xdh) and loci with two alleles in high frequency in all populations but, with little interpopulational differentiation (e.g., Est-6 and alpha-Fuc). The loci in the lower mode are probably under purifying selection; a large proportion of those in the latter mode may be under balancing selection. (6) Comparison of genic variation for loci located inside vs. outside inversions, comparison of F(ST) for inversions and their associated genes, and comparison of F(ST) and map position for pairs of loci all suggest that, while linkage has some influence, it does not seem to constrain the pattern of variation that a locus may develop. (7) Eighteen polymorphic loci show latitudinal variation in allele frequencies which are consistent in populations from different continents. (8) Estimates of Nei genetic distance between population pairs are generally low between populations on the same continent and high between populations on different continents. There are two important exceptions: population pairs for which both localities are in the temperate zone show no relationship to distance, and in cases where both populations are tropical or subtropical, the genetic distance is higher than for the temperate-tropical comparisons and seem even higher than one would expect from the geographic distance separating them. The latter observation suggests that either geographic separation outweighs differences in environment in determining the genetic composition of a population or that all tropical populations are not experiencing the same environment.-The results are discussed in relation to the neutralist-selectionist controversy of genic variation and two important conclusions are drawn: First, there is a negative correlation between the number of loci sampled and the resulting heterozygosity. This means that available estimates of heterozygosity, 85% of which are based on 30 or fewer loci, are high and hence not appropriate for making between-taxa comparisons. Secondly, there is a group of loci, comprising one-third of polymorphic loci (or about 15% of all loci studied), that is distinguishable by different patterns of variation within and among populations. Most of these loci have clinal variation which is consistent with the hypothesis that their genetic variation is maintained by balancing selection.  相似文献   

7.
E. G. Zimmerman 《Genetica》1988,76(2):153-159
Genetic variation at eight polymorphic loci was examined in a population of a subterranean rodent, the plains pocket gopher (Geomys bursarius), sampled over a 10-yr period. Two loci exhibited relatively minor changes in gene frequencies, while the remaining loci demonstrated major shifts in predominant alleles, loss of minor alleles, and addition of alleles due to migration. Significant deviations from Hardy-Weinberg expectations, concomitant to heterozygote deficiencies, were observed for several loci. Temporal heterogeneity, as measured by FST, was high and comparable to that exhibited by local populations sampled over relatively short periods of time. The high degree of temporal genetic variation is consistent with observations that fossorial rodents occur in locally isolated populations with small effective population sizes that are subject to genetic drift, bottlenecking, and inbreeding.  相似文献   

8.
The population genetics of aquatic animals in the Florida Everglades may be strongly influenced by extinction and colonization dynamics. We combined analyses of allozyme and microsatellite loci to test the hypothesis that two levels of population structure are present for spotted sunfish (Pisces: Centrarchidae: Lepomis punctatus) inhabiting the Everglades. We hypothesized that annual cycles of marsh dry-down increase local-scale genetic variation through a process of local extinction and colonization; we hypothesized that barriers to gene flow by levee/canal systems create a second, regional level of genetic variation. In 1996 and 1997, we sampled spotted sunfish from 11 Everglades sites that were distributed in three regions separated by levees. We documented patterns of genetic variation at 7 polymorphic allozyme loci and 5 polymorphic microsatellite loci. Most genetic variation was present among local populations, according to both types of genetic markers. Furthermore, samples from marsh sites were heterogeneous, while those from canals were not. These data supported our hypothesis that dry-down events and local population dynamics in the marsh have a significant effect on population genetic structure of spotted sunfish. We found no support for our hypothesis that water-management structures superimpose a second level of genetic structure on this species, possibly because canals obscure historical structure by facilitating gene flow or because the complete canal system has been in place for fewer than 20 generations of this species. Our data suggests a continent-island (canal-marsh) structure of populations with high gene flow among regions and recurrent mixing in marshes from canal and creek habitats.  相似文献   

9.
The characterization and analysis of genetic variation at the HLA loci provides important insight for population geneticists trying to understand the evolutionary forces that have shaped human populations. This study describes the HLA-A and HLA-B loci serotyping and statistical analysis on an isolated Native American population, the Havasupai of Arizona. Four alleles at the HLA-A locus were identified, while eight alleles were found at the HLA-B locus. These variants were present as 20 of 32 potential two-locus haplotypes, with five of the six most common haplotypes exhibiting high positive linkage disequilibrium. Significant homozygote deficiency (heterozygosity excess) was detected both at HLA-A and at HLA-B. This deviation from Hardy-Weinberg proportions was not attributable to nonselective causes such as different allele frequencies in males and females or avoidance of consanguineous matings. In addition, the distribution of alleles at both HLA-A and HLA-B was more even than expected from neutrality theory; that is, the observed Hardy-Weinberg homozygosity was only 62.4% of that expected under neutrality. These observations suggest that balancing selection is of major importance in maintaining genetic variation at HLA-A and HLA-B.  相似文献   

10.
Gene frequency data from samples of Gambusia affinis populations at 76 localities across the Savannah River drainage were used to investigate temporal and spatial patterns in population genetic structure. Localities in the Par Pond system on the Savannah River Plant were sampled in 1971, 1977, and 1979. Allelic frequencies in these populations were generally stable through time, although significant temporal changes were observed among samples from Pond C, an impoundment receiving thermal effluent. Significant spatial heterogeneity in allele frequencies was observed on both microgeographic and regional scales. Populations within the Par Pond system were spatially subdivided at four of the five loci surveyed (mean FST = 0.051). Subdivision was even more pronounced when samples from across the Savannah River drainage were compared (mean FST = 0.196). A hierarchial analysis of gene diversity (GST) demonstrated that most of the genic diversity across the drainage exists as within-subdivision diversity. Even when populations from such contrasting habitats as rivers, creeks, ponds, and reservoirs are compared, an average of only 13% of the total gene diversity was attributed to between-group diversity. Greatest between-group gene diversity was observed when reservoirs were compared with one another. This general pattern of low between-habitat diversity suggests that differential selection pressures are not playing a major role in producing the observed levels of subdivision. In the Par Pond system, neither single locus nor multilocus genetic distances were significantly associated with geographic distance or with its reciprocal. For samples from over the Savannah River drainage, significant correlations between genetic and geographic distance were observed only for the Gpi-2 and Pgm-2 loci. Thus, there was a general lack of concordance between genetic and geographic distances. Spatial autocorrelation demonstrated patterns consistent with Wright's isolation by distance model. Significant positive correlations in allelic frequencies among neighboring populations were observed for five of six alleles; allelic frequencies in more distantly separated populations were typically not correlated.  相似文献   

11.
Eight wild populations of the High Sierra golden trout, Salmo aguabonita, and one domestic stock of rainbow trout, Salmo gairdneri, were examined for biochemical-genetic variation in eight protein systems. Variation within the eight systems was determined by at least 10 loci in both golden and rainbow trout and all the alleles identified in rainbow trout were observed as electro-phoretically identical phenotypes in golden trout. Variation was observed at an average of 51 percent of the loci in the golden trout samples and for five of the 10 loci in the rainbow trout. Average heterozygosity ranged from 12.6 to 13.9 percent for seven of the golden trout populations with one showing a low value of 5.4 percent. A comparable estimate of 12.1 percent was found for the rainbow stock. On the basis of genetic variation and allele frequencies at three loci, the eight golden trout populations were divided into two distinct groups. Three populations sampled from the Little Kern River basin tended to be genetically distinct from two additional Little Kern River basin populations and from three geographically distinct populations sampled from the eastern Kern River area. The former three populations were hypothesized to be of a recent rainbow-golden hybrid origin. Trout in the other two Little Kern River basin populations, sampled in head-waters of a stream tributary to the Little Kern River, were considered to be the threatened Little Kern golden trout, S. a. whitei Evermann, due to their high degree of genetic similarity to the geographically distinct subspecies S. a. aguabonita sampled from the eastern Kern River area. The finding of substantial genetic variation in the wild golden trout populations indicates that this threatened species is not at present genetically impoverished and thus does not appear to be in immediate danger of extinction through lack of adaptive capability.  相似文献   

12.
Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species'' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.  相似文献   

13.
Historically documented founder events provide opportunities to assess the effects of population size reductions on genetic variation, but the actual magnitude of genetic change can be measured only when direct comparisons can be made to the source or ancestral population. We assayed variation at nine microsatellite loci in the translocated population of the Laysan finch ( Telespiza cantans ) at Pearl and Hermes reef (PHR), and compared the level of variation to that in the source population on Laysan Island. Heterogeneity in allele frequencies was highly significant at eight of the nine loci, primarily as a result of fluctuations in allele frequencies in the three PHR populations. Intra- and interpopulational measures of genetic diversity generally matched predictions based on the well-documented history of three islet populations at PHR: significantly lower numbers of alleles and polymorphic loci, as well as higher pairwise F ST values and genetic distance, were observed for the two populations that underwent severe size reductions. Changes in heterozygosity at single loci were unpredictable, as both significant increases and decreases were observed in founder populations. A significant excess of heterozygotes was found in two populations and was highly significant over all four finch populations ( P < 0.003). Estimates of effective population size from temporal changes in heterozygosity and allele frequencies were very small ( N e≤ 30) as a result of the founding events and the constraints of islet area on population numbers. We concluded that the PHR population is not adequate as a secondary genetic reserve for T. cantans , and an alternative refuge needs to be established.  相似文献   

14.
内蒙古典型草原羊草种群遗传分化的RAPD分析   总被引:15,自引:3,他引:15  
运用 RAPD技术对内蒙古典型草原不同生境 8个羊草种群进行分析。采用 2 4个随机引物 (10 nt)在 8个种群中共检测到2 2 4个扩增片断 ,其中多态性片断 173个 ,总的多态位点百分率达 77.2 % ,特异性片断 2 2个 ,占 9.82 % ,平均每个引物扩增的DNA带数为 9.3 3条。利用 Nei指数和 Shannon指数估算了 8个种群的遗传多样性 ,并计算种群相似系数和遗传距离 ,运用UPGMA法进行聚类分析。结果表明 :羊草大部分的遗传变异存在于种群内 ,只有少部分的遗传变异存在于种群间 ,Nei指数和Shannon指数计算结果分别为 85.4%和 66.8% ;羊草不同种群的遗传多样性存在差异 ;8个羊草种群平均遗传距离为 0 .2 3 16,变异范围为 0 .1587~ 0 .2 70 0 ,说明 8个羊草种群间的遗传变异不大 ,即 :在较小地理范围内羊草的遗传分化程度较小 ;8个种群可聚为 3个类群 ,聚类结果显示生境相似的种群能够聚在一起 ,而地理距离最近的种群不一定归为一类 ,说明小范围内羊草种群间的遗传分化与地理距离不存在相关性 ,而与其生境间的相似度相关。影响遗传相似性的不是单一因子而是各种因子的综合作用 ,较小地理范围内羊草种群间的遗传分化主要是由环境的异质性所引起的  相似文献   

15.
Arnaud JF  Madec L  Guiller A  Deunff J 《Heredity》2003,90(6):451-458
Local patterns of genetic variation were analysed in the land snail Helix aspersa for 32 populations sampled within a patchy agricultural landscape: the polders of the Bay of Mont-Saint-Michel (France). This investigation examined the allele frequencies at four enzymatic markers and five microsatellite loci through the genotyping of 580 individuals. A strongly significant population genetic substructuring (mean F(ST)=0.088, P<0.001) was found at the scale of the whole polders area (3050 ha) and both categories of markers displayed a similar magnitude of spatial genetic differentiation. We did not find any obvious effects of habitat fragmentation on the distribution of genetic variability. Despite the reality of habitat patchiness and environmental instability (related to farming practices), an isolation by distance process was clearly depicted, although selective pressures cannot be ruled out for one enzymatic locus. Overall, genetic drift, along with occasional long-distance episodes of gene flow, was presumably the most likely evolutionary force that shaped the observed pattern of genetic variation.  相似文献   

16.
The Osensjmn vendace, Coregonus albula (L.), population was founded in 1895 by introduction of about 90 000 fry from Lake Mjøsa. After 92 years, or about 46 generations of isolation, remarkable genetic changes were evident among the transplants compared to their source population. Electrophoresis of 33 enzyme loci revealed that allele frequencies differed significantly in eight of the 10 polymorphic loci. Nei's unbiased genetic distance was D = 0.012, representing the level of population differentiation usually observed among distant watercourses in vendace. Genetic variability was clearly higher among the transplants: average observed heterozygosity was 14.8% compared with 11.2% among Lake Mjøsa vendace. The high genetic variation among Osensjoen vendace shows that the divergence is not due to a small number of founders or bottlenecks in later generations. Selection by the contrasting environmental conditions between the habitats of the donor and transplanted populations is the most plausible hypothesis to explain the genetic changes in the Osensjsen vendace.  相似文献   

17.
Terrestrial‐breeding amphibians are likely to be vulnerable to warming and drying climates, as their embryos require consistent moisture for successful development. Adaptation to environmental change will depend on sufficient genetic variation existing within or between connected populations. Here, we use Single Nucleotide Polymorphism (SNP) data to investigate genome‐wide patterns in genetic diversity, gene flow and local adaptation in a terrestrial‐breeding frog (Pseudophryne guentheri) subject to a rapidly drying climate and recent habitat fragmentation. The species was sampled across 12 central and range‐edge populations (192 samples), and strong genetic structure was apparent, as were high inbreeding coefficients. Populations showed differences in genetic diversity, and one population lost significant genetic diversity in a decade. More than 500 SNP loci were putatively under directional selection, and 413 of these loci were correlated with environmental variables such as temperature, rainfall, evaporation and soil moisture. One locus showed homology to a gene involved in the activation of maturation in Xenopus oocytes, which may facilitate rapid development of embryos in drier climates. The low genetic diversity, strong population structuring and presence of local adaptation revealed in this study shows why management strategies such as targeted gene flow may be necessary to assist isolated populations to adapt to future climates.  相似文献   

18.
We examined the adaptive importance of RAPD variation in the population genetic structure of wild barley, Hordeu m spontaneum. The test involved (1) a nested sampling design with four population groups representing four distinct environments; and (2) a comparison of observed variation with that expected as a result of natural selection. Analyses of selection on fitness-related traits by reciprocal introductions served as guidelines for the expected pattern of RAPD variation. We found no concordance between the observed pattern of population genetic structure and that expected under the null hypothesis of environment-specific natural selection. There was no relationship between genetic distance and environmental similarity; none of 54 putative loci exhibited an allele distribution in accordance with that expected and no favoured epistatic allele combinations were detected across the four environments. The fact that environmentally induced adaptation, detected by fitness-related traits, was not reflected in inter-population RAPD structure (1) strongly enhances the neutralist viewpoint and (2) casts doubt on the notion that significant correlations between some environmental parameters and allele frequencies in one or more loci are evidence of selection on the latter.  相似文献   

19.
When species are continuously distributed across environmental gradients, the relative strength of selection and gene flow shape spatial patterns of genetic variation, potentially leading to variable levels of differentiation across loci. Determining whether adaptive genetic variation tends to be structured differently than neutral variation along environmental gradients is an open and important question in evolutionary genetics. We performed exome-wide population genomic analysis on deer mice sampled along an elevational gradient of nearly 4,000 m of vertical relief. Using a combination of selection scans, genotype−environment associations, and geographic cline analyses, we found that a large proportion of the exome has experienced a history of altitude-related selection. Elevational clines for nearly 30% of these putatively adaptive loci were shifted significantly up- or downslope of clines for loci that did not bear similar signatures of selection. Many of these selection targets can be plausibly linked to known phenotypic differences between highland and lowland deer mice, although the vast majority of these candidates have not been reported in other studies of highland taxa. Together, these results suggest new hypotheses about the genetic basis of physiological adaptation to high altitude, and the spatial distribution of adaptive genetic variation along environmental gradients.  相似文献   

20.
Cyclic parthenogenesis, the alternation of parthenogenetic and sexual reproduction, can lead to a wide scope of population structures, ranging from almost monoclonal to genetically highly diverse populations. In addition, sexual reproduction in aquatic cyclic parthenogens is associated with the production of dormant stages, which both enhance potential gene flow among populations as well as impact local evolutionary rates through the formation of dormant egg banks. Members of the cladoceran genus Daphnia are widely distributed key organisms in freshwater habitats, which mostly exhibit this reproduction mode. We assessed patterns of genetic variation within and among populations in the eurytopic and morphologically variable species Daphnia longispina , using data from both nuclear (13 microsatellite loci) and mitochondrial (partial sequencing of the 12S rRNA gene) markers from a set of populations sampled across Europe. Most populations were characterized by very high clonal diversity, reflecting an important impact of sexual reproduction and low levels of clonal selection. Among-population genetic differentiation was very high for both nuclear and mitochondrial markers, and no strong pattern of isolation by distance was observed. We also did not observe any substantial genetic differentiation among traditionally recognized morphotypes of D. longispina . Our findings of high levels of within-population genetic variation combined with high among-population genetic differentiation are in line with predictions of the monopolization hypothesis, which suggests that in species with rapid population growth and potential for local adaptation, strong priority effects due to monopolization of resources lead to reduced levels of gene flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号