首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The concentrations of cyclic nucleotides (cAMP and cGMP) were measured in blood plasma of dogs subjected to extracorporeal hemocarboperfusion. In spite of complete and irreversible absorption of cyclic nucleotides by the coal absorbent, SKN-2M, the concentration of cGMP in plasma remained within normal. The concentration of cAMP increased 1.5-2.5-fold. The rise in the cAMP concentration was not connected with injection of sodium thiopental and heparin before hemocarboperfusion. It is assumed that cyclic nucleotides play the role of circulating intercellular regulators in blood plasma. These regulators are necessary for the normal course of metabolic processes.  相似文献   

2.
Guanosine 3':5'-monophosphate phosphodiesterases, which appear to be under allosteric control, have been partially purified from rat liver supernatant and particulate fractions. The preferred substrate for both phosphodiesterases was cGMP (Km values: cGMP less than cIMP less than cAMP). At subsaturating concentrations of substrate, the phosphodiesterases were stimulated by purine cyclic nucleotides. The order of effectiveness for activation of cyclic nucleotide hydrolysis was cGMP greater than cIMP greater than cAMP greater than cXMP. Using cAMP derivatives as activators of cIMP hydrolysis, modifications in the ribose, cyclic phosphate, and purine moieties were shown to alter the ability of the cyclic nucleotide to activate the supernatant enzyme. cGMP, at concentrations that stimulated cyclic nucleotide hydrolysis, enhanced chymotryptic inactivation of the supernatant phosphodiesterase. At similar concentrations, cAMP was not effective. It appears that on interaction with appropriate cyclic nucleotides, this phosphodiesterase undergoes conformational changes that are associated with increased catalytic activity and enhanced susceptibility to proteolytic attack. Divalent cation may not be required for the nucleotide-phosphodiesterase interaction and resultant change in conformation.  相似文献   

3.
The addition of physiological concentrations of either cAMP or cGMP stimulated the release of RNA from isolated prelabeled rat liver nuclei to a fortified cytosol in a cell-free system. The released RNA was shown to be primarily mRNA by its binding to oligo(dT)-cellulose and its sedimentation profile. Treatment of rats with cAMP or cGMP 30 min prior to the preparation of cyclic nucleotides on the cell-free system. Cyclic nucleotides stimulation of RNA release occurred in systems prepared from resting rat liver, Novikoff hepatoma, and Morris hepatoma 5123D, but not the 18-h regenerating liver. The response of the cell-free system to added cyclic nucleotides reflected the in vivo concentration of these substances in the tissues from which the system was prepared. Those with high in vivo levels were not stimulated while those with lower levels did respond to added cyclic nucleotides. Neither cAMP nor cGMP had an appreciable effect on rRNA release.  相似文献   

4.
Experiments with rat liver microsomal galactosyltransferase has been developed to test the effect of cyclic nucleotides on the transfer activity. An overall stimulation is observed when cAMP or cGMP (concentration higher that 10(-6) M) are added to the incubation medium. However, more detailed experiments show that the cyclic nucleotides do not act as direct effectors of the enzyme but present the precursors degradation by the glycosylnucleotide pyrophosphatases.  相似文献   

5.
It is established that the effect of thymus-derived species is connected with the cyclic nucleotide system. The action of thymus-derived immunocorrectors (thymalin, thymagen, vilosen) on catabolic processes of cyclic nucleotides has been observed under conditions of anaphylaxy and sensibilization. They show that sensibilization of the animal is bound up with a decrease of the cAMP/cGMP ratio. Anaphylaxis induces levelling of the cAMP/cGMP ratio up to the reference level. So, activity of enzymes of cyclic nucleotide catabolism grows due to the influence of thymogen, thymalin and vilosen in lymphocytes of sensibilized guinea pigs and tends to an increase in lymphocytes of anaphylaxis-treated animals.  相似文献   

6.
Recruitment of monocytes into tissues and their differentiation into macrophages or dendritic cells (DCs) depend on the microenvironment of the inflammatory site. Although many factors affecting this process have been identified, the intracellular signaling pathways implicated are poorly understood. We found that cyclic nucleotides regulate certain steps of monocyte differentiation into DCs. Increased levels of the cyclic nucleotides, cAMP or cGMP, inhibit differentiation of CD14(+)/CD1a(low) monocytes into CD14(-)/CD1a(high) DCs. However, DC-specific ICAM-3-grabbing nonintegrin (CD209) up-regulation was not affected by cyclic nucleotides, indicating that DC development was not blocked at the monocyte stage. Interestingly, Ag-presenting function was increased by cyclic nucleotides, as measured by the higher expression of MHC class II, CD86, and an increased ability to stimulate CD4(+) T cell proliferation in allogeneic MLRs. Although cyclic nucleotides do not completely block DC differentiation, they do block the ability of DCs to be induced to mature by LPS. Treatment during DC differentiation with either cAMP or cGMP analogues hampered LPS-induced expression of CD83, DC-LAMP, and CCR7 and the ability of DCs to migrate toward CCL19/macrophage-inflammatory protein 3beta. Interestingly, the induction of a CD16(+) subpopulation of cells was also observed. Thus, signals causing an increase in either cAMP or cGMP levels during monocyte recruitment to inflammatory sites may restrain the activation of acquired immunity by blocking DC development and migration to lymph nodes. At the same time, these signals promote development of an active intermediate cell type having properties between those of macrophages and DCs, which might contribute to the innate immune response in the periphery.  相似文献   

7.
Studies on the crisp-1 (cr-1), cyclic adenosine 3',5'-monophosphate (cAMP)-deficient mutants of Neurospora crassa were undertaken to characterize the response of these mutants to exogenous cyclic nucleotides and cyclic nucleotide analogs. A growth tube bioassay and a radioimmune assay for cyclic nucleotides yielded the following results. (i) 8-Bromo cAMP and N6-monobutyryl cAMP but not dibutyryl cAMP are efficient cAMP analogs in Neurospora, stimulating mycelial elongation of the cr-1 mutants. Exogenous cyclic guanosine 3'5'-monophosphate (cGMP) also stimulates such mycelial elongation. (ii) Both cAMP levels and cGMP levels found in cr-1 mycelia are lower than those in wild type. However, the levels of both cyclic nucleotides are normal in conidia of cr-1. The data on cr-1 mycelia and those reported earlier in Escherichia coli (M. Shibuya, Y. Takebe, and Y. Kaziro (Cell 12:528-528, 1977) show a previously unexpected relationship between cAMP and cGMP metabolism in microorganisms. The semicolonial morphology of another adenylate cyclase-deficient mutant of Neurospora, frost, was not corrected by exogenous cyclic nucleotides or by phosphodiesterase inhibitors indicating that the frost morphology is probably not caused by low endogenous cAMP levels. The low adenylate cyclase activity and the abnormal morphology of frost may be related separately to the linolenate deficiency reported in the mutant.  相似文献   

8.
Lymphocyte activation: the dualistic effect of cAMP   总被引:1,自引:0,他引:1  
The effects of exogenously added cyclic nucleotides on DNA synthesis have been investigated in human peripheral blood lymphocytes stimulated with phytohemagglutinin (PHA). At low doses of PHA the addition of exogenous cAMP resulted in an inhibition of DNA synthesis. At optimal or supraoptimal doses of PHA the addition of cAMP, db-cAMP, or 8-Br-cGMP resulted in enhancement of DNA synthesis. Measurement of cell associated cAMP and cGMP levels in lymphocytes exposed to PHA with or without exogenously added cAMP revealed a gradual increase in cAMP levels and a fluctuating decline in cGMP levels.  相似文献   

9.
A study was made of the effects of cAMP, db-cGMP and db-cAMP on the mitotic activity of the cells of the tooth anlage and alveolar bone in tissue culture of mouse embryo aged 15 days. The data indicate that db-cGMP and db-cAMP at concentrations 10(-6) M and 10(-8) M do not have any essential effect on the mitotic activity of the cells of the tooth anlage whereas cAMP inhibits the mitotic activity in these cells as compared with control. A definite relationship was established between the character of differentiation of the osseous and dental tissues in tissue culture and the concentration of cyclic nucleotides. db-cAMP, db-cGMP and cAMP raise the mitotic activity of the osteogenic cells, inhibit resorption of the alveolar bone, and stimulate formation of a new osseous tissue.  相似文献   

10.
Effects of cyclic nucleotides on motile iridophores were examined in the blue damselfish, Chrysiptera cyanea. All of the cyclic nucleotides tested, i.e. cAMP, 2',3'-cAMP and cGMP, accelerated the clearing response of the cells even at concentrations of 10(-5) or 10(-4) M. The action of these nucleotides was effectively antagonized by methylxanthines. These results suggest that the effect of cyclic nucleotides on damselfish iridophores is mediated by adenosine receptors in a similar fashion to the action of adenosine.  相似文献   

11.
1. The effect of cyclic nucleotides on aggregates of dispersed embryonic neural retina cells was examined in order to study their influence upon macromolecular synthesis, i.e. protein and DNA. 2. Cyclic AMP, dibutyryl cAMP, cyclic GMP and dibutyryl cGMP were used at various concentrations (5 x 10(-4) -5 mM). 3. The incorporation of labeled precursors into DNA and protein were used to monitor the effect of cyclic nucleotides on cultured aggregates. 4. All nucleotides exhibited a stimulatory effect at 5 x 10(-4) and 5 x 10(-3) mM on macromolecular synthesis, with resulting growth and proliferation of chick neural retina cells. 5. High concentrations (5 x 10(-1) and 5 mM) of cyclic nucleotides exhibited an inhibitory effect upon macromolecular synthesis and a marked cytotoxic effect.  相似文献   

12.
Odorants and pheromones are essential to insects as chemical cues for finding food or an appropriate mating partner. These volatile compounds bind to olfactory receptors (Ors) expressed by olfactory sensory neurons. Each insect Or functions as a ligand-gated ion channel and is a heteromeric complex that comprises one type of canonical Or and a highly conserved Orco subunit. Because there are many Or types, insect Ors can recognize with high specificity a myriad of chemical cues. Cyclic nucleotides can modulate the activity of insect Or-Orco complexes; however, the mechanism of action of these nucleotides is under debate. Here, we show that cyclic nucleotides, including cAMP and cGMP, interact with the silkmoth sex pheromone receptor complex, BmOr-1-BmOrco, from the outside of the cell and that these nucleotides act as antagonists at low concentrations and weak agonists at high concentrations. These cyclic nucleotides do not compete with the sex pheromone, bombykol, for binding to the BmOr-1 subunit. ATP and GTP also weakly inhibited BmOr-1-BmOrco activity, but D-ribose had no effect; these findings indicated that the purine moiety was crucial for the inhibition. Only the bombykol receptors have been so far shown to be subject to modulation by nucleotide-related compounds, indicating that this responsiveness to these compounds is not common for all insect Or-Orco complexes.  相似文献   

13.
When aggregating amoebas of the cellular slime mold Dictyostelium discoideum are disaggregated and morphogenesis is reinitiated, the amoebas will reaggregate in less than 110th the original time. When aggregating amoebas are disaggregated and resuspended either in full nutrient medium or in buffered salts solution containing dextrose, they retain this developmentally acquired capacity to rapidly reaggregate for approximately 1 hr and then lose it completely in a synchronous and discrete step which we have referred to as the “erasure event.” In this report, it is demonstrated that micromolar concentrations of cAMP completely block this transition from the developmental to vegetative state, and that other cyclic nucleotides also inhibit it, but they do so at 20-fold higher concentrations. Neither the hydrolysis products of cAMP nor the vegetative chemoattractant folic acid inhibit dedifferentiation at concentrations as high as 10?3M, demonstrating a specificity for cyclic nucleotides and cAMP in particular. The addition of cAMP at any time during the lag period preceding the erasure event inhibits it and addition immediately after the erasure event reverses it. Since cAMP may inhibit the transition from the developmental to vegetative state intracellularly or extracellularly, we have also examined the intracellular concentration of cAMP and the levels of cAMP binding sites on the cell surface during the erasure process. Evidence is presented that the majority of cAMP binding sites on the cell surface are not necessary for the inhibition of erasure by cAMP. The results of these latter studies are discussed in terms of alternative models for the involvement of cAMP in the transition from the developing to vegetative state.  相似文献   

14.
The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3,'5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases, including asthma, cardiovascular disease, attention-deficit hyperactivity disorder, Parkinson's disease, and Alzheimer's disease. Although biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. The authors report the development and validation of a new cell-based PDE4 assay using a constitutively active G-protein-coupled receptor as a driving force for cAMP production and a cyclic nucleotide-gated cation channel as a biosensor in 1536-well plates.  相似文献   

15.
Purified human peripheral lymphocytes incubated with the mitogenic plant lectins phytohemagglutinin and concanavalin A were examined for alterations in intracellular cGMP and cAMP under a variety of experimental conditions and using multiple techniques for the isolation and purification of cGMP and cAMP before assay of the cyclic nucleotides by radioimmunoassay. In contrast to work reported by others, we have been unable to demonstrate consistent increases in cGMP under any of the experimental conditions used and with any of the various purification schemes. In these same experiments exogenous cGMP added to the lymphocytes could be measured, and the immunoreactive material was destroyed by cyclic nucleotide phosphodiesterase, indicating that our inability to measure increases in cGMP was not caused by our inability to measure cGMP. Under identical experimental conditions, small but consistent and statistically significant increases in cAMP were noted. In addition, other parameters of lymphocyte activation, 45Ca uptake (an early parameter), and incorporation of 3H thymidine into DNA were unimpaired. These data call to question the concept of cGMP as the second messenger in lectin-stimulated human peripheral lymphocytes.  相似文献   

16.
Polysphondylium violaceum is shown to produce and excrete cyclic nucleotides and to produce a cell-associated cyclic nucleotide phosphodiesterase(s). The amount of adenosine 3′,5′-cyclic monophosphate (cAMP) excreted by the amebae reaches a maximum during development when aggregation centers are just forming and then falls off rapidly. Measurements of total cAMP show that the amount synthesized increases more than 15-fold throughout development with the majority of the increase coming during the culmination stages. Guanosine 3′,5′-cyclic monophosphate (cGMP) is either not excreted or is excreted at levels below our limits of detection. An increase in the total cGMP synthesized occurs at mid-aggregation when two or three sharp peaks of synthesis are observed. However, development of P. violaceum is not affected by the addition of high concentrations of either cAMP or cGMP (or their dibutyryl derivatives) to the medium despite the fact that the cells produce these nucleotides. Cell-associated cyclic nucleotide phosphodiesterase activity, which hydrolyses both cAMP and cGMP, is greatest at the onset of starvation with a second increase in activity during aggregation.  相似文献   

17.
Trypsin increases intracellular levels of cylic AMP (cAMP) in lymphocytes. The trypsin-induced increase in cAMP is blocked by specific trypsin inhibitors and by high concentrations of different proteins. Several proteolytic enzymes from various sources, including other pancreatic proteases, do not cause an increase in cAMP under the same experimental conditions. Immobilized trypsin induced the same increase in cAMP as does free trypsin. The trypsin-induced rise in cAMP is not due to inhibition of cAMP phosphodiesterase, but consistent activation of adenylate cyclase by trypsin could not be demonstrated. The extent of the trypsin-induced increase in intracellular cAMP correlates with the type of the lymphocyte and with the state of maturity attained by the cells. Transformed lymphocytes and nonlymphoid cells do not react at all.  相似文献   

18.
Dibutyryl cyclic GMP has been reported to interact with antisera specific for C-terminal tetrapeptide amide common for cholecystokinin (CCK) and gastrin. Moreover, cyclic nucleotides elute by gel chromatography in the same position as the free CCK/gastrin tetrapeptide. Therefore, we have examined the reactivity of 25 mononucleotides with eight CCK and gastrin antisera. The results show that the nucleotides all bind poorly to the antisera (nucleotide concentration required 1 mM). Hence, endogenous cyclic nucleotides, which are present in biological extracts in pM to nM concentrations, do not interfere with immunochemical CCK or gastrin measurements. The antisera displayed highly individual patterns of reactivity without preferential binding of di- or monobutyryl cyclic nucleotides (AMP, GMP or IMP). Thus, the present results do not support the idea of structural resemblance between the C-terminus of CCK/gastrin peptides and butyryl derivatives of cyclic GMP. Enzymatic treatment of the antral tetrapeptide-like immunoreactivity showed that nucleotides do not contribute to this material, which appears exclusively peptidergic.  相似文献   

19.
Studies on the level of cyclic nucleotides (cAMP and cGMP) in human and animal glial tumours showed that the content of both nucleotides, especially that of cAMP, decreases in all the tumours. The cAMP/cGMP ratio also drops down. Concurrently it appears to be the most consistent parameter of nucleotide metabolism both in brain tissue and in human or animal glial tumours. The growing tumour affects cAMP and cGMP metabolism not only in the involved but also in the other hemisphere. No principal differences between human and animal tumours have been revealed in the content of cyclic nucleotides and its variation in tumour tissue.  相似文献   

20.
Reproducible induction of the enzyme tyrosine aminotransferase by dibutyryl cAMP (Bt2cAMP) in a line of HTC hepatoma cells in suspension culture requires that the cells be preinduced with dexamethasone, a synthetic glucocorticoid which itself induces tyrosine aminotransferase. Concentrations of dexamethasone that do not induce tyrosine aminotransferase fail to support Bt2cAMP induction, removal of the steroid from the medium leads to a loss of the Bt2cAMP effect, and an HTC cell line whose aminotransferase is not steroid-inducible does not respond to the cyclic nucleotide. We show that the further induction of tyrosine aminotransferase by Bt2cAMP in dexamethasone-treated cells is due to an increased rate of enzyme synthesis. The cyclic nucleotide has no effect on aminotransferase synthesis in cells grown in the absence of steroid. Several lines of evidence suggest that dexamethasone acts at a step beyond the activation of protein kinase by cAMP: (a) basal levels of cAMP are not altered by growth of HTC cells in dexamethasone; (b) accumulation of cAMP from the medium is not enhanced; (c) the glucocorticoid does not induce cAMP-dependent protein kinase in HTC cells; and (d) there is no augmentation of cAMP binding to the regulatory protein, nor is there any change in cAMP activation of protein kinase caused by growth in dexamethasone. These results help define a system that should be useful in studying the interaction of cyclic nucleotides and steroid hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号