首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Basement membranes (BMs) evolved together with the first metazoan species approximately 500 million years ago. Main functions of BMs are stabilizing epithelial cell layers and connecting different types of tissues to functional, multicellular organisms. Mutations of BM proteins from worms to humans are either embryonic lethal or result in severe diseases, including muscular dystrophy, blindness, deafness, kidney defects, cardio-vascular abnormalities or retinal and cortical malformations. In vivo-derived BMs are difficult to come by; they are very thin and sticky and, therefore, difficult to handle and probe. In addition, BMs are difficult to solubilize complicating their biochemical analysis. For these reasons, most of our knowledge of BM biology is based on studies of the BM-like extracellular matrix (ECM) of mouse yolk sac tumors or from studies of the lens capsule, an unusually thick BM. Recently, isolation procedures for a variety of BMs have been described, and new techniques have been developed to directly analyze the protein compositions, the biomechanical properties and the biological functions of BMs. New findings show that native BMs consist of approximately 20 proteins. BMs are four times thicker than previously recorded, and proteoglycans are mainly responsible to determine the thickness of BMs by binding large quantities of water to the matrix. The mechanical stiffness of BMs is similar to that of articular cartilage. In mice with mutation of BM proteins, the stiffness of BMs is often reduced. As a consequence, these BMs rupture due to mechanical instability explaining many of the pathological phenotypes. Finally, the morphology and protein composition of human BMs changes with age, thus BMs are dynamic in their structure, composition and biomechanical properties.  相似文献   

2.
Despite the understanding of the importance of mitogen-activated protein (MAP) kinase activation in the stimulation of growth, little is known about the role of MAP kinase regulation during contact inhibited growth control. To investigate the role of the MAP kinase extracellular signal-regulated kinase (ERK) during the transition to a contact inhibited state, cultures of normal fibroblasts (BJ) were grown to different stages of confluency. The levels of MAP kinase phosphatase (MKP) expression and the amount of active ERK and MAP ERK kinase (MEK) in these cultures were assessed through western blot analysis and were compared to fibrosarcoma cell cultures (HT-1080), which lack contact inhibition. In normal fibroblasts, the amounts of active MEK and ERK decline at contact inhibition, concurrently with a rise in MKP-1, MKP-2, and MKP-3 protein levels. In contrast, fibrosarcoma cells appear to lack density-dependent regulation of the ERK pathway. Additionally, altering the redox environment of fibrosarcoma cells to a less reducing state, as seen during contact inhibition, results in increased MKP-1 expression. Taken together, these results suggest that the altered redox environment upon contact inhibition may contribute to the regulation of ERK inactivation by MKPs.  相似文献   

3.
基底膜和肿瘤转移   总被引:3,自引:0,他引:3  
Zhou J  Cheng Y  Ding J 《生理科学进展》2006,37(4):307-312
基底膜是一种特化的细胞外基质,是肿瘤转移过程中必须穿越的物理屏障。基底膜的组成成分通过和细胞表面受体整合素相互作用,在调节肿瘤转移的过程中发挥了重要作用。另一方面,肿瘤细胞通过分泌基质降解酶类破坏基底膜的组织结构,同时调节细胞外基质受体整合素的表达,为穿过:基底膜和在靶器官粘附、增殖创造有利条件。了解细胞和基底膜的相互作用可以为抗转移药物的研发提供新的策略。  相似文献   

4.
Collagen IV scaffolds assemble through an intricate pathway that begins intracellularly and is completed extracellularly. Multiple intracellular enzymes act in concert to assemble collagen IV protomers, the building blocks of collagen IV scaffolds. After being secreted from cells, protomers are activated to initiate oligomerization, forming insoluble networks that are structurally reinforced with covalent crosslinks. Within these networks, embedded binding sites along the length of the protomer lead to the “decoration” of collagen IV triple helix with numerous functional molecules. We refer to these networks as “smart” scaffolds, which as a component of the basement membrane enable the development and function of multicellular tissues in all animal phyla. In this review, we present key molecular mechanisms that drive the assembly of collagen IV smart scaffolds.  相似文献   

5.
Summary— Aspergillus fumigatus, the causative agent of human aspergillosis, binds to and degrades basement membrane laminin. Using immunoelectron microscopy, laminin binding appeared to be associated with the cell wall expansions of resting conidia, and progressively extended to the outer electron dense layer of the conidial wall during the germination process. Labeling of thin sections revealed numerous binding sites in the cytoplasm, whereas the inner cell wall and the plasma membrane were not labeled. Attachment of A fumigatus conidia on microtiter plates coated with laminin and its fragments P1 and E8 was also investigated. Conidia cells showed good adhesion to wells coated with laminin. As indicated by inhibition experiments, the interaction was specific and fragment P1 represented the major binding site on the laminin molecule. In addition, since A fumigatus produced an extracellular serine protease, we determined the susceptibility of laminin to this enzyme. We demonstrated that a crude protease extract was capable to degrade laminin in solution as well as in tissue sections. The laminin cleavage products were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All the three chains were extensively degraded within 1 h. Treatment of the crude protease extract with the enzyme inhibitors, phenylmethylsulfonyl-fluoride and chymostatin, blocked the degradation of laminin, indicating a chymotrypsin-like serine protease activity. Immunofluorescence microscopy of cryostat sections of mouse and rat kidneys treated with the protease extract showed widespread loss of laminin epitopes from basement membranes. Enzyme treatment also removed immunoreactivity from lungs as observed after immunoperoxidase performed on paraffin sections. Binding and proteolytic degradation of laminin may together facilitate initial interaction of A fumigatus with the host tissues.  相似文献   

6.
In the microvascular system, pericytes are located at the abdominal side of capillary endothelial cells.

To discover the role of pericytes in the microvascular system, we have analyzed the extracellular proteins secreted from pericytes isolated from microvessel fragments of rat epididymal fat pads and found that they synthesize substantial amounts of basement membrane components such as type IV collagen and laminins. Secretion of type IV collagen was markedly stimulated by ascorbic acid phosphate. Reducing and non-reducing sodium dodecyl sulfate gel electrophoresis showed that pericytes produce six laminin chains assembled into different trimeric isoforms. Two of them were similar to laminin variants produced by aortic and pulmonal endothelial cells but others were suggested to be novel variants.  相似文献   

7.
The epidermal basement membrane (BM) plays important roles in adhesion between epidermis and dermis and in controlling epidermal differentiation. In a skin-equivalent (SE), components of the epidermal BM such as laminin 5 and type IV and VII collagens were detected in conditioned media and in basal keratinocytes. Despite production of these BM components, however, BM was rarely observed at the dermal-epidermal junction. One possible explanation for the absence of BM in SEs is that matrix metalloproteinases (MMPs) degrade newly synthesized extracellular matrices. In fact, several MMPs, such as MMPs-1, 2, 3, and 9, were observed to be present in conditioned media and some of them were in active forms. Tissue inhibitor of metalloproteinase (TIMP)-2 was not detected, although TIMP-1 was present. BM degradation activity presumably exceeds BM formation activity in the SE, resulting in the absence of lamina densa at the dermal-epidermal junction. Synthetic MMP inhibitors CGS27023A and MMP inhibitor I, which inhibit MMPs 1, 2, 3, and 9, markedly augmented deposition of laminin 5 and type IV and VII collagens at the dermal-epidermal junction, resulting in formation of continuous epidermal BM. These results suggest that the balance between synthesis and degradation of BM components is important for BM formation.  相似文献   

8.
Collagens are thought to represent one of the most important molecular innovations in the metazoan line. Basement membrane type IV collagen is present in all Eumetazoa and was found in Homoscleromorpha, a sponge group with a well-organized epithelium, which may represent the first stage of tissue differentiation during animal evolution. In contrast, spongin seems to be a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton, such as in the well-known bath sponge. In the freshwater sponge Ephydatia mülleri, we previously characterized a family of short-chain collagens that are likely to be main components of spongins. Using a combination of sequence- and structure-based methods, we present evidence of remote homology between the carboxyl-terminal noncollagenous NC1 domain of spongin short-chain collagens and type IV collagen. Unexpectedly, spongin short-chain collagen-related proteins were retrieved in nonsponge animals, suggesting that a family related to spongin constitutes an evolutionary sister to the type IV collagen family. Formation of the ancestral NC1 domain and divergence of the spongin short-chain collagen-related and type IV collagen families may have occurred before the parazoan-eumetazoan split, the earliest divergence among extant animal phyla. Molecular phylogenetics based on NC1 domain sequences suggest distinct evolutionary histories for spongin short-chain collagen-related and type IV collagen families that include spongin short-chain collagen-related gene loss in the ancestors of Ecdyzosoa and of vertebrates. The fact that a majority of invertebrates encodes spongin short-chain collagen-related proteins raises the important question to the possible function of its members. Considering the importance of collagens for animal structure and substratum attachment, both families may have played crucial roles in animal diversification.  相似文献   

9.
Basement membranes are thin sheets of self-assembled extracellular matrices that are essential for embryonic development and for the homeostasis of adult tissues. They play a role in structuring, protecting, polarizing, and compartmentalizing cells, as well as in supplying them with growth factors. All basement membranes are built from laminin and collagen IV networks stabilized by nidogen/perlecan bridges. The precise composition of basement membranes, however, varies between different tissues. Even though basement membranes represent physical barriers that delimit different tissues, they are breached in many physiological or pathological processes, including development, the immune response, and tumor invasion. Here, we provide a brief overview of the molecular composition of basement membranes and the process of their assembly. We will then illustrate the heterogeneity of basement membranes using two examples, the epithelial basement membrane in the gut and the vascular basement membrane. Finally, we examine the different strategies cells use to breach the basement membrane.  相似文献   

10.
This study focuses on the basement membrane associated modifications that take place after androgen blockade, by studying some of its main components, through histochemical, immuno-histochemical and Western blotting tests, and its ultrastructural aspects. It was demonstrated that laminin and collagen type IV remain associated with a thickened basement membrane and that there is an apparent increase in heparan sulfate content 21 days after castration. Ultrastructurally, basal lamina appeared extensively folded and pleated. It was also observed that detachment of epithelial cells is not dependent of basal lamina degradation and that the free basal lamina surfaces are folded by the action of adjacent cells. We have also observed some aspects of smooth muscle cell degeneration and death, that lead to modifications of the associated basal lamina. In this case, residual basal lamina also shows extensive folding. The results suggested that degradation of excess basement membrane does not occur or is a very slow process within the period examined, and that basement membrane is left re-organized but ultrastructurally and compositionally unaffected.  相似文献   

11.
Summary Fibroblasts of the synovium of sheathed tendons were isolated, and their biochemical properties were compared with those of the fibroblasts of the remaining tendon. The synovial cells had a lower attachment efficiency than did the tendon cells. On the day of cell isolation the synovial cells synthesized collagen as 10% of their total protein, whereas the tendon cells synthesized 30% collagen. After growth in fetal bovine serum (FBS), the percentage of collagen synthesized by both populations decreased; however, the synovial cells still made less collagen than did the tendon cells (5 versus 11%). On the basis of cyanogen bromide peptide analysis, the synovial cells were found to synthesize Types I and III collagen in primary culture, whereas the tendon cells synthesized only Type I. The synovial cells aslo synthesized two to three times less sulfated glycosaminoglycans in culture than did the tendon cells. Thus, the two cell, populations differed in attachment efficiency and in their biosynthesis of collagen and sulfated glycosaminoglycans. These differences reflect extracellular matrix differences that have been observed in the tendon in vivo. In addition, the results augment existing data showing that not all fibroblasts have identical phenotypes. This investigation was supported by National Institutes of Health Grant AM 25749.  相似文献   

12.
Cell culture in collagen lattice is known to be a more physiological model than monolayer for studying the regulation of extracellular matrix protein deposition. The synthesis of sulfated glycosaminoglycans (GAG) and dermatan sulfate (DS) proteoglycans by 3 cell strains were studied in confluent monolayers grown on plastic surface, in comparison to fully retracted collagen lattices. Cells were labelled with35S-sulfate, followed by GAG and proteoglycan analysis by cellulose acetate and SDS-polyacrylamide gel electrophoresis, respectively. The 3 cell strains contracted the lattice in a similar way. In monolayer cultures, the major part of GAG was secreted into culture medium whereas in lattice cultures of dermal fibroblasts and osteosarcoma MG-63 cells but not fibrosarcoma HT-1080 cells, a higher proportion of GAGs, including dermatan sulfate, was retained within the lattices. Small DS proteoglycans, decorin and biglycan, were detected in fibroblasts and MG-63 cultures. They were preferentially trapped within the collagen gel. In retracted lattices, decorin had a higher Mr than in monolayer. Biglycan was detected in monolayer and lattice cultures of MG-63 cells but in lattice cultures only in the case of fibroblasts. In this last case, an up regulation of biglycan mRNA steady state level and down regulation of decorin mRNA was observed, in comparison to monolayers, indicating that collagen can modulate the phenotypical expression of small proteoglycan genes.Supported by a fellowship from the Centre National de la Recherche Scientifique  相似文献   

13.
The deposition of the basement membrane glycoproteins, laminin, fibronectin, and type IV procollagen was studied by indirect immunofluorescence microscopy during the attachment and differentiation of murine C-1300 neuroblastoma cells. A typical cytoplasmic perinuclear staining for the basement membrane antigens was seen both in undifferentiated and differentiated cells. Freshly seeded suspended cells lacked surface fluorescence but in two hours after plating, distinct punctate laminin deposits became discernible on the ventral surface of the cells. Notably, in sparsely seeded undifferentiated cultures, the cell-associated extracellular laminin deposits could only be detected under the primary attaching cells, whereas daughter cells in clonal cell colonies lacked such fluorescence. In cultures induced to neurite formation with dibutyryl cyclic AMP, laminin deposition was also detected in association with the growing cytoplasmic extensions. No distinct differences were found between the secreted proteins of cultures of differentiated and nondifferentiated neuroblastoma cells, but the patterns of fucosylation of high-molecular weight proteins in the two cultures were markedly different. We conclude that cultured neuroblastoma cells both synthesize, secrete and deposit laminin. The distribution of laminin during neuroblastoma cell attachment and neurite extension suggests that this glycoprotein may be involved in cell–to–substratum interactions in C-1300 cell cultures.  相似文献   

14.
15.
Summary We have previously reported that pericytes derived from retinal and brain microvessels aggregate into nodules soon after reaching confluence. Nodule formation involves a reorganization of the cells resulting in the presence of sparse cells, confluent monolayers, multilayers, sprouts, and nodules within the same culture dish. Extracellular calcification occurs only within the nodules, demonstrating that pericytes are capable of undergoing osteogenic differentiation in culture and that this differentiation is related to nodule formation. Using immunofluorescence we have now studied the distribution of laminin, type IV collagen, type X collagen, and tenascin in pericyte cultures during nodule formation. These matrix macromolecules were also identified by a combination of biochemical techniques, including Northern blot hybridization, immunoblotting and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecule that seems to be related to type X collagen was demonstrated by the presence of a pepsin-resistant, collagenase-sensitive polypeptide of molecular weight approximately 45 kDa. The production of laminin, type X-related collagen, and tenascin by pericytes has not been previously reported. Our results suggest that the synthesis or distribution or both of these molecules is dependent on the state of pericyte differentiation. The expression of laminin, type IV collagen, and type X-related collagen was maximal in multilayer areas, sprouts, and nodules. Tenascin appeared homogeneously distributed in monolayer and multilayer areas; when calcified nodules were present, the anti-tenascin serum preferentially decorated a discrete area circumscribing the nodules. Tenascin and type X collagen have been found transiently in vivo preceding calcification; their possible role in this process is not known. Our results also suggest an association between laminin, type IV collagen, and calcification. The in vitro experimental system described here may help to clarify the role of matrix macromolecules in the calcification process.  相似文献   

16.
Summary Rings of rat aorta cultured in Matrigel, a reconstituted gel composed of basement membrane molecules, gave rise to three-dimensional networks composed of solid cellular cords and occasional microvessels with slitlike lumina. Immunohistochemical and ultrastructural studies showed that the solid cords were composed of endothelial sprouts surrounded by nonendothelial mesenchymal cells. The angiogenic response of the aortic rings in Matrigel was compared to that obtained in interstitial collagen, fibrin, or plasma clot. Morphometric analysis demonstrated that the mean luminal area of the microvascular sprouts and channels was significantly smaller in Matrigel than in collagen, fibrin, or plasma clot. The percentage of patent microvessels in Matrigel was also markedly reduced. Autoradiographic studies of3H-thymidine-labeled cultures showed reduced DNA synthesis by developing microvessels in Matrigel. The overall number of solid endothelial cords and microvessels was lower in Matrigel than in fibrin or plasma clot. A mixed cell population isolated from Matrigel cultures formed a monolayer in collagen or fibrin-coated dishes but rapidly reorganized into a polygonal network when plated on Matrigel. The observation that gels composed of basement membrane molecules modulate the canalization, proliferation, and organization into networks of vasoformative endothelial cells in three-dimensional cultures supports the hypothesis that the basement membrane is a potent regulator of microvascular growth and morphogenesis. This work was supported by grants from the W. W. Smith Charitable Trust and grants CA14137 and HL43392 from the National Institutes of Health, Bethesda, MD.  相似文献   

17.
During adipogenic differentiation human mesenchymal stem cells (hMSC) produce collagen type IV. In immunofluorescence staining differentiating hMSCs started to express collagen type IV when Oil Red O-positive fat droplets appeared intracellularly. Quantitative real time-polymerase chain reaction confirmed progressive increase of collagen type IV α1 and α2 mRNA levels over time, 18.6- and 12.2-fold by day 28, respectively, whereas the copy numbers of α3-α6 mRNAs remained rather stable and low. Type IV collagen was in confocal laser scanning microscopy seen around adipocytes, where also laminins and nidogen were found, suggesting pericellular deposition of all key components of the fully developed basement membrane. Immunofluorescence staining of matrix metalloproteinase-2 (MMP-2, 72 kD type IV collagenase, gelatinase A) and MMP-9 (92 kD type IV collagenase, gelatinase B) disclosed only faint staining of MSCs, but MMP-9 was strongly induced during adipogenesis, whereas MSC supernatants disclosed in zymography pro-MMP-2 and faint pro-MMP-9 bands, which increased over time, with partial conversion of pro-MMP-2 to its active 62 kD form. Differentiation was associated with increasing membrane type 1-MMP/MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) staining, which may enable participation of type IV collagenases in basement membrane remodelling via ternary MT1-MMP/TIMP-2/MMP-2 or -9 complexes, focalizing the fully active enzyme to the cell surface. MMP-9, which increased more in immunofluorescence staining, was perhaps preferentially bound to cell surface and/or remodelling adipocyte basement membrane. These results suggest that upon MSC-adipocyte differentiation collagen type IV synthesis and remodelling become necessary when intracellular accumulation of fat necessitates a dynamically supporting and instructive, partly denatured adipogenic pericellular type IV collagen scaffold.  相似文献   

18.
The aim of this study was to detect the effect of extracellular matrix (ECM) proteins on rat Leydig cell shape, adhesion, expression of integrin subunits and testosterone production, in vitro. Leydig cells isolated from adult rats were cultured on plates uncoated or coated with different concentrations of laminin-1, fibronectin, or type IV collagen in the presence or absence of hCG for 3 or 24 hr. A significant increase of cell adhesion and of alpha3, alpha5, and beta1 integrin subunit expression was observed when cells were cultured on ECM proteins, compared to those grown on uncoated plates. Leydig cells cultured on glass coverslips coated with ECM proteins for 24 hr exhibited elongated shapes with long cell processes (spreading), while cells cultured on uncoated plates showed few cell processes. A significant decrease in testosterone production was observed when basal and hCG-stimulated Leydig cells were cultured for 3 or 24 hr on plates coated with type IV collagen (12 and 24 microg/cm(2)) compared to uncoated plates. A significant though a slighter decrease in testosterone production was also observed in cells cultured on plates coated with fibronectin (12 and 24 microg/cm(2)), compared to uncoated plates. Laminin-1 did not modify testosterone production under basal or hCG stimulated conditions. These results suggest that ECM proteins are able to modulate Leydig cell steroidogenesis, in vitro.  相似文献   

19.
In early chick blastodermal morphogenesis, the hypoblast layer is organized beneath the epiblast and induces an axial structure. However, the origin of hypoblast cells and the mechanism of hypoblast layer formation are poorly understood. We hypothesized that the hypoblast layer is formed by an invasive process across the basement membrane of the juxtaposing epiblast, and tested the idea in vitro . Primary and secondary hypoblast cells from embryos at various pre-streak stages were dissociated into single cells and cultured on reconstituted basement membrane gel, laminin gel or fibronectin gel in the culture medium with or without serum for 24–48 h. As a result, we found that after 24 h of serum-supplemented culture, up to 35% of the hypoblast cells dissolved the gel and made holes on it. Similarly, up to 36% of the hypoblast cells showed invasiveness after 48 h in the serum-free culture. Furthermore, it was observed that Koller's sickle cells, which are regarded to be the progenitors of secondary hypoblast cells, penetrated those gels on which they were seeded. The posterior epiblast cells covering Koller's sickle were also invasive. These results suggest that the presumptive primary hypoblast cells that are known to mingle with epiblast cells invade through the basement membrane to form the hypoblast layer. Furthermore, the present results imply that invasion through the basement membrane may be involved in the formation of Koller's sickle, the anlage of secondary hypoblast.  相似文献   

20.
Several factors have highlighted the vasculature in Alzheimer's disease (AD): Cerebral amyloid angiopathy (CAA) is common, amyloid fibrils emanate from the vascular basement membrane (VBM), and similar forms of β-amyloid are found in vascular and parenchymal amyloid accumulations. The present article discusses the presence of microvascular pathology in AD. Microangiopathy, in addition to neurofibrillary tangles, senile plaques, and CAA, is a common pathologic hallmark of AD. VBM components are associated with amyloid plaques, and nonamyloidotic alterations of the VBM occur in brain regions susceptible to AD lesions. Also, intra-VBM perivascular cells (traditionally called pericytes), a subset of which share the immunophenotype of microglia and other mononuclear phagocytic system (MPS) cells, have been implicated in vascular alterations and cerebrovascular amyloid deposition. Perivascular and parenchymal MPS cells have access to several sources of the β-amyloid protein precursor, including platelets, circulating white cells, and neurons. MPS cells would thus be ideally situated to uptake and process the precursor, and deposit β-amyloid in a fashion analogous to that seen in other forms of systemic and cerebral amyloidoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号