共查询到20条相似文献,搜索用时 15 毫秒
1.
真鲷肝脏解偶联蛋白2(UCP2)基因及其功能的探讨 总被引:6,自引:0,他引:6
从真鲷(Pagrus major)肝脏通过简并引物PCR克隆解偶联蛋白2(UCP2)cDNA部分序列。该片段长674bp,编码224个氨基酸残基。推测的此部分氨基酸序列包含线粒体载体蛋白的特征结构,并与其它脊椎动物UCP2氨基酸序列同源性在72.8%以上。对变温动物色类UCP2组织表达调控研究表明:与哺乳类UCP2基因不同,真鲷UCP2基因在肝脏大量表达,而在腹腔肠系膜脂肪组织则仅有痕迹量表达,两者表达水平相差20倍以上。饲料中添加10%绿鳕油或48h饥饿对真鲷肝脏UCP2基因的表达水平均无显著影响,表明UCP2基因在脂肪含量高的鱼类肝脏表达十分稳定,为维持其基本功能所必需。真鲷肝脏和腹腔肠系膜脂肪组织UCP2基因表达水平的强烈反差,与鱼类这两种贮脂器官完全不同的氧化活性相一致[动物学报49(1):110—117,2003]。 相似文献
2.
Michiya Matsuyama Ricardo Torres Lara Shuhei Matsuura 《Environmental Biology of Fishes》1988,21(1):27-36
The histology of the gonad of the red sea bream,Pagrus major, was examined in order to study the early gonadal development, sexual maturation and sex ratio in a natural population. A
total of 1,117 fish between the ages of 4 months and 8 years were examined. Gonads of 4-month-old fish were either sexually
undifferentiated with a central cavity, or ovarian in form. Gonads of 12- and 18-month-old fish were ovaries or bisexual gonads,
while those of 2-year-old fish were ovaries, bisexual gonads or testes. Fish aged between 3 and 8 years had ovaries or testes,
except for a few bisexual gonads found in 3- and 4-year-old fish. The chronological appearance of females, hermaphrodites
and males in that order, and histological evidence, suggested that the testis originates from the ovary via a bisexual gonad
in the juvenile stage. The sex ratio of females to males at the age of 2 years and over was about 1:1, suggesting that hermaphroditic
red sea bream appear in about 50% of the juvenile population. The sexual pattern in this species, therefore, is concluded
to be gonochorism with a bisexual juvenile stage. 相似文献
3.
Hajime Shimmoto Kenji Kawai Takuya Ikawa Syun‐ichirou Oshima 《Microbiology and immunology》2010,54(3):135-142
Megalocytivirus infections cause serious mass mortality in marine fish in East and Southeast Asian countries. In this study the immunogenicity of crude subunit vaccines against infection by the Megalocytivirus RSIV was investigated. Three capsid proteins, 18R, 351R and a major capsid protein, were selected for use as crude subunit vaccines. High homology among Megalocytivirus types was found in the initial sequence examined, the 351R region. Red sea bream (Pagrus major) juveniles were vaccinated by intraperitoneal injection of recombinant formalin‐killed Escherichia coli cells expressing these three capsid proteins. After challenge infection with RSIV, fish vaccinated with the 351R‐recombinant bacteria showed significantly greater survival than those vaccinated with control bacteria. The 351R protein was co‐expressed with GAPDH from the bacterium Edwardsiella tarda in E. coli; this also protected against viral challenge. A remarkable accumulation of RSIV was observed in the blood of vaccinated fish, with less accumulation in the gills and spleen tissues. Thus, the 351R‐GAPDH fusion protein is a potential vaccine against Megalocytivirus infection in red sea bream. 相似文献
4.
Oku H Ogata HY Liang XF 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2002,131(4):775-785
Lipoprotein lipase (LPL) is a key enzyme of lipid deposition and metabolism. To investigate the mechanism of lipid deposition in fish, as a first step, we have characterized the LPL gene of a marine teleost red sea bream Pagrus major by cDNA and genomic structure analysis. The red sea bream LPL gene encodes 511 amino acids and spans approximately 6.3 kb of the genome. The coding region is organized into ten exons and nine introns. In comparison with the LPL of other animals, the deduced amino acid sequence shows a high degree of similarity with a conservation of functional domains, e.g. catalytic triad, N-glycosylation sites, lipid and heparin binding regions. The 1.1 kb of 5′ flanking region contains two CCAAT, sequences homologous to Oct-I site and response elements for hormones including glucocorticoid, insulin and thyroid hormone. The results of the present study will facilitate further study of the function and regulation of the LPL in non-mammalian vertebrates. 相似文献
5.
Karasuda S Yamamoto K Kono M Sakuda S Koga D 《Bioscience, biotechnology, and biochemistry》2004,68(6):1338-1344
Kinetic analysis was done on the 46-kDa chitinase (EC 3.2.1.14) purified from the stomach of red sea bream, Pagrus major, using glycolchitin and N-acetylchitooligosaccharides (GlcNAc(n), n=2-6) as substrates. High activity was observed at two pHs, such as 2.5 and 9.0, toward glycolchitin as seen in other insect chitinases, and also at both pH 2.5 and 5.0 even toward a short substrate, N-acetylchitopentasaccharide. Allosamidin competitively inhibited chitinase with Ki value of 0.0214 microM at pH 2.5 and 0.0024 microM at pH 9.0 in the reaction of glycolchitin. Substrate inhibition was observed in the reaction of N-acetylchitopentasaccharide. The anomeric forms of the products from N-acetylchitooligosaccharides were analyzed to be beta anomer by the high pressure liquid chromatography (HPLC) method. The data for both beta-anomer formation and allosamidin inhibition suggest that red sea bream chitinase belongs to family 18 of glycosyl hydrolases. This suggestion is also supported by the results for the N-terminal amino acid sequence. 相似文献
6.
7.
The capability of planktonic yolk-sac larvae of red sea bream Pagrus major in detecting food was examined in the laboratory to ascertain basic knowledge on the early life history of this marine fish. After infrequent vertical burst swimming followed by slight rising or sinking, the larvae remained motionless within thin layers of concentrated food extract (rotifer, Brachionus plicatilis). At the moment of hatching, the larvae already have receptor cells with several cilia arranged radially in their open nostrils. Thus it is likely that by means of their vertical movement they are capable of sensing the thin food patch layer. We suggest that planktonic larvae of Pagrus major are capable of detecting and remaining within food patches even before the onset of feeding. The onset of food detection in the earlier stages may be, to some extent, the more efficient strategy for larval survival and growth because this ability could contribute to a reduction in energy consumption. 相似文献
8.
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO+10% PG+10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6+/-16.7% (mean+/-S.D.) and 77.8+/-15.5%, were achieved by the straw vitrifying method (20.5% DMSO+15.5% acetamide+10% PG, thawing at 43 degrees C and washing in 0.5M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation. 相似文献
9.
The objective of this study is to develop a method of differentiation of hatchery-reared and artificially-released red sea bream (Pagrus major) from wild fish, based upon their morphometric differences. Morphometric measurements were done on fork length and 14 other characters. Among these charac)ters, significant differences between hatchery-reared and wild red sea bream were observed in body height, height at eye, eye diameter and upper jaw length. Discriminant functions were effective in differentiating artificial fish from wild fish. 相似文献
10.
11.
Eitaro Sawayama Yoshihiro Handa Koichiro Nakano Daiki Noguchi Motohiro Takagi Yosuke Akiba Shuwa Sanada Goro Yoshizaki Hayato Usui Kenta Kawamoto Miwa Suzuki Kiyoshi Asahina 《Heredity》2021,127(2):167
Deformities in cultured fish species may be genetic, and identifying causative genes is essential to expand production and maintain farmed animal welfare. We previously reported a genetic deformity in juvenile red sea bream, designated a transparent phenotype. To identify its causative gene, we conducted genome-wide linkage analysis and identified two single nucleotide polymorphisms (SNP) located on LG23 directly linked to the transparent phenotype. The scaffold on which the two SNPs were located contained two candidate genes, duox and duoxa, which are related to thyroid hormone synthesis. Four missense mutations were found in duox and one in duoxa, with that in duoxa showing perfect association with the transparent phenotype. The mutation of duoxa was suggested to affect the transmembrane structure and thyroid-related traits, including an enlarged thyroid gland and immature erythrocytes, and lower thyroxine (T4) concentrations were observed in the transparent phenotype. The transparent phenotype was rescued by T4 immersion. Loss-of-function of duoxa by CRISPR–Cas9 induced the transparent phenotype in zebrafish. Evidence suggests that the transparent phenotype of juvenile red sea bream is caused by the missense mutation of duoxa and that this mutation disrupts thyroid hormone synthesis. The newly identified missense mutation will contribute to effective selective breeding of red sea bream to purge the causative gene of the undesirable phenotype and improve seed production of red sea bream as well as provide basic information of the mechanisms of thyroid hormones and its related diseases in fish and humans.Subject terms: Agricultural genetics, Animal breeding 相似文献
12.
Liang XF Ogata HY Oku H 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2002,132(4):913-919
Juvenile red sea bream Pagrus major were fed either a commercial diet (diet 1) or diets supplemented with 10% oleate (diet 2), 5% oleate+5% linoleate (diet 3) or 5% oleate+5% n-3 polyunsaturated fatty acid mixture (diet 4) for 4 weeks. Following the conditioning period, the effects of dietary fatty acids on lipoprotein lipase (LPL) gene expression in the liver and visceral adipose tissue of fed (5 h post-feeding) and starved (48 h post-feeding) fish were investigated by competitive polymerase chain reaction. Fish liver showed substantial LPL mRNA expression that is not found in adult rat liver. When compared with diet 1, diets 2-4 tended to increase the LPL mRNA level in the liver, but tended to decrease it in the visceral adipose tissue under the fed condition. The reciprocal regulation of the liver and visceral adipose LPL mRNA abundance by dietary fatty acids was comparable to that of rat brown and white adipose tissue, respectively. The change in the LPL mRNA level by fatty acids was not completely consistent with the degree of fatty acid unsaturation. Our results indicate that the regulatory effect of dietary fatty acids on LPL gene expression was tissue-specific and related to feeding conditions, but was not solely dependent on the degree of unsaturation of fatty acids. 相似文献
13.
14.
Liang XF Oku H Ogata HY 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2002,131(2):335-342
The effects of feeding condition and dietary lipid level on lipoprotein lipase (LPL) gene expression in the liver and visceral adipose tissue of red sea bream Pagrus major were investigated by competitive polymerase chain reaction. Not only visceral adipose tissue but also liver of red sea bream showed substantial LPL gene expression. In the liver, starvation (at 48 h post-feeding) drastically stimulated LPL gene expression in the fish-fed low lipid diet, but had no effect in the fish fed high lipid diet. Dietary lipid level did not significantly affect the liver LPL mRNA level under fed condition (at 5 h post-feeding). In the visceral adipose tissue, LPL mRNA number per tissue weight was significantly higher in the fed condition than in the starved condition, irrespective of the dietary lipid levels. Dietary lipid levels did not affect the visceral adipose tissue LPL mRNA levels under fed or starved conditions. Our results demonstrate that both feeding conditions and dietary lipid levels alter the liver LPL mRNA levels, while only the feeding conditions but not dietary lipid levels cause changes in the visceral adipose LPL mRNA level. It was concluded that the liver and visceral adipose LPL gene expression of red sea bream seems to be regulated in a tissue-specific fashion by the nutritional state. 相似文献
15.
Two types of gynogenetic diploids were artificially induced in the red sea bream ( Pagrus major Temminck et Schlegel), either by suppressing the first cell cleavage (mitotic-G2N) or by retaining the second polar body (meiotic-G2N). The eggs of red sea bream were inseminated with UV-irradiated (3000 erg mm−2 ) sperm of Japanese parrot fish ( Oplegnathus fasciatus Temminck et Schlegel), and hydrostatic pressure shock of 700 kg cm−2 for 5.5 min at 46 min after insemination (mitotic-G2N) and cold shock of 1 °C for 30 min at 3 min after insemination (meiotic-G2N) were applied to the eggs, sequentially. The total hatching rate and hatching rate of normal larvae of the normal diploid, meiotic-G2N and mitotic-G2N were 86.5 and 94.9%, 38.1 and 45.8%, and 12.8 and 35.0%, respectively. The induction of mitotic-G2N was confirmed by isozyme marker analysis. The standard deviations, variances and coefficients of variation of the body weight, standard length and body depth in 91-day-old juveniles were always large in mitotic-G2N, small in normal-2N and intermediate in meiotic-G2N. The variances in the number of pectoral fin rays and caudal fin rays of mitotic-G2N were significantly higher than those of normal-2N. The incidences of deformities were highest in the mitotic-G2N group. The survival rates and growth performance of the meiotic- and mitotic-G2N were significantly lower than those of normal-2N. Both G2N survived for 3 years to the adult stage. 相似文献
16.
17.
18.
Yuichi Fukunishi Reiji Masuda Dominique Robert Yoh Yamashita 《Environmental Biology of Fishes》2013,96(1):13-20
The amount of ultraviolet (UV)-B radiation reaching the sea surface has increased due to ozone depletion. Several laboratory studies have highlighted the negative impacts of UV radiation on fish using hatchery-reared specimens. However, potential differences in UV tolerance between wild and hatchery-reared fish have been given little consideration. Wild and reared juveniles of red sea bream and black sea bream were exposed to one of four different UV-B radiation levels (1.8; 1.1; 0.4; 0?W/m2) for 4?h. Survival rate was measured every 2?h for a period of 24?h (red sea bream) or 48?h (black sea bream) following exposure. Wild and reared juvenile red sea bream were characterized by similar survival rate, with survival declining to almost 0?% 24?h after exposure at the 1.1 and 1.8?W/m2 levels. In black sea bream, wild individuals showed significantly higher survival than reared fish in levels 1.1 and 1.8?W/m2. Melanophore density was also measured since melanin absorbs UV radiation. Wild black sea bream showed higher melanophore density compared to reared individuals, while no such difference was observed in red sea bream. We conclude that wild black sea bream juveniles acquire higher UV tolerance partly by increasing melanophore density through exposure to UV radiation. Our results indicate that the predicted impacts of UV radiation on fish populations solely based on experimentation with hatchery-reared specimens may be overestimated for some species. 相似文献
19.
Oku H Umino T 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2008,151(3):268-277
To investigate the molecular mechanism of fish adipocyte differentiation, the three subtypes of PPAR genes (alpha, beta and gamma) were characterized in a marine teleost red sea bream (Pagrus major). The primary structures of red sea bream PPARs exhibited high degrees of similarities to their mammalian counterparts, and their gene expression was detected in various tissues including adipose tissue, heart and hepatopancreas. During the differentiation of primary cultured red sea bream adipocytes, three PPARs showed distinct expression patterns: The alpha subtype showed a transient increase and the beta gene expression tended to increase during adipocyte differentiation whereas the gene expression level of PPARgamma did not change. These results suggest that they play distinct roles in adipocyte differentiation in red sea bream. In the differentiating red sea bream adipocytes, mammalian PPAR agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2), ciglitazone and fenofibrate did not show clear effects on the adipogenic gene expression. However, 2-bromopalmitate increased the PPARgamma and related adipogenic gene expression levels, suggesting the gamma subtype plays a central role in red sea bream adipocyte differentiation and in addition, fatty acid metabolites can be used as modulators of adipocyte function. Thus our study highlighted the roles of PPARs in fish adipocyte differentiation and provided information on the molecular mechanisms of fish adipocyte development. 相似文献
20.
Konishi T Kato K Araki T Shiraki K Takagi M Tamaru Y 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2005,140(3-4):309-320
Two distinct cDNAs corresponding to GSTA1 and GSTA2 genes encoding glutathione S-transferases (GSTs) from the hepatopancreas of red sea bream, Pagrus major were cloned and sequenced. A comparison of the nucleotide sequences of GSTA1 and GSTA2 revealed 98% identity and their derived amino acid sequences had 96% similarity. Both genes could be classified as alpha-class GSTs on the basis of their amino acid sequence identity with other species. Genomic DNA cloning showed that both GSTA1 and GSTA2 genes consisted of six exons and five introns. In a comparison of genomic DNAs, the structures of GSTA1 and GSTA2 differed. In addition, Southern-blot analysis indicated that at least two kinds of alpha-class GSTs existed in the P. major genome. In order to biochemically characterize the recombinant enzymes (pmGSTA1-1 and pmGSTA2-2), both clones were highly expressed in Escherichia coli. The purified pmGSTA1-1 and pmGSTA2-2 exhibited glutathione conjugating activity toward 1-chloro-2,4-dinitrobenzene and glutathione peroxidase activity toward cumene hydroperoxide, while neither pmGSTs show detectable activity toward 1,2-dichloro-4-nitrobenzene, ethacrynic acid, 4-hydroxynonenal, or p-nitrobenzyl chloride. Despite their high level of amino acid sequence identity, the pmGSTs had quite different enzyme-kinetic parameters. 相似文献