首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: McCarthy, JP, Wood, DS, Bolding, MS, Roy, JLP, and Hunter, GR. Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle. J Strength Cond Res 26(9): 2345-2355, 2012-The purpose of this study was to determine where stretch-shortening cycle (SSC) potentiation of force, power, velocity, and acceleration occurs across the concentric phase of ballistic leg presses. Second, we examined the influence of late eccentric phase force and length of the amortization phase on potentiated concentric phase performance variables. Twenty-one male runners (age: 31.9 ± 4.7 years) performed SSC and concentric-only (CO) ballistic leg press throws. Potentiations of concentric actions were calculated as the difference between SSC and CO contractions. An analysis splitting the concentric range of motion (ROM) into 6 equal time intervals determined force and acceleration were potentiated (p < 0.05) only during the first one-sixth time interval of concentric motion, whereas velocity and power were potentiated (p < 0.05) at all time intervals over the entire concentric motion with the exception of power over the last one-sixth time interval. A more precise analysis examining 20-millisecond time intervals across the first 200 milliseconds of concentric motion determined force was potentiated only over the first 140 milliseconds and acceleration only over the first 160 milliseconds. Eccentric force measured during the last 100 milliseconds of eccentric motion was related to potentiated force during the initial 200 milliseconds of concentric motion (r = 0.44, p < 0.05) and potentiated mean power across the full concentric ROM (r = 0.62, p < 0.01). Results indicate that in contrast to power and velocity, potentiation of force and acceleration occurs only early during the concentric phase of SSC ballistic leg presses. Correlational findings imply late eccentric phase force is important for generating force and power during the concentric phase of the SSC and thus training focusing on enhancing late phase eccentric force appears important for developing explosive force and power during SSC movements.  相似文献   

2.
Maximal eccentric loading has been associated with higher levels of spindle afferent activity but lower levels of integrated EMG as compared to maximal concentric loading. Elbow flexor EMG was recorded from 17 subjects during concentric (CONC) and eccentric (ECC) elbow flexion at 70° s−1 using a Kin-Com dynamometer. We hypothesized that peak EMG amplitude would be more sensitive to fluctuations in facilitation by the spindle primary afferents via the segmental stretch reflex pathway, and that the mean EMG would be more reflective of the ongoing level of muscle activation. A ratio of peak to mean EMG (P/M EMG ratio) was predicted to be larger during maximal eccentric loading than maximal concentric loading. The peak EMG (P<0.013) and the P/M EMG ratio (P<0.001) were significantly greater during the ECC condition than the CONC condition. In a subgroup of three subjects who underwent 3 weeks of eccentrically biased weight training, EMG, peak torque and torque variability were assessed before and after training. P/M EMG ratio decreased, while peak torque and torque variability increased following the training. Differences in the P/M EMG ratio appear to reflect differences in the way eccentric and concentric muscle actions are controlled and do not simply represent less control during the eccentric task.  相似文献   

3.
Stretch-shortening cycle: a powerful model to study normal and fatigued muscle   总被引:11,自引:0,他引:11  
Komi PV 《Journal of biomechanics》2000,33(10):1197-1206
Stretch-shortening cycle (SSC) in human skeletal muscle gives unique possibilities to study normal and fatigued muscle function. The in vivo force measurement systems, buckle transducer technique and optic fiber technique, have revealed that, as compared to a pure concentric action, a non-fatiguing SSC exercise demonstrates considerable performance enhancement with increased force at a given shortening velocity. Characteristic to this phenomenon is very low EMG-activity in the concentric phase of the cycle, but a very pronounced contribution of the short-latency stretch-reflex component. This reflex contributes significantly to force generation during the transition (stretch-shortening) phase in SSC action such as hopping and running. The amplitude of the stretch reflex component - and the subsequent force enhancement - may vary according to the increased stretch-load but also to the level of fatigue. While moderate SSC fatigue may result in slight potentiation, the exhaustive SSC fatigue can dramatically reduce the same reflex contribution. SSC fatigue is a useful model to study the processes of reversible muscle damage and how they interact with muscle mechanics, joint and muscle stiffness. All these parameters and their reduction during SSC fatigue changes stiffness regulation through direct influences on muscle spindle (disfacilitation), and by activating III and IV afferent nerve endings (proprioseptic inhibition). The resulting reduced stretch reflex sensitivity and muscle stiffness deteriorate the force potentiation mechanisms. Recovery of these processes is long lasting and follows the bimodal trend of recovery. Direct mechanical disturbances in the sarcomere structural proteins, such as titin, may also occur as a result of an exhaustive SSC exercise bout.  相似文献   

4.
The aim of this study was to evaluate the Kin-Com II dynamometer in the study of the stretch-shortening cycle (a concentric muscle action preceded by an eccentric muscle action). Measurements were made of plantar flexion at different angular velocities (120 degrees.s-1 and 240 degrees.s-1) with the knee at two different angles (0 degree and 90 degrees). Ten healthy women ranging in age from 22 to 41 years were studied. Torque values were recorded simultaneously with surface electromyograms (EMG): maximal voluntary concentric torque values were recorded and, after a short rest, the torque values of the concentric action which followed immediately after an eccentric action of the same velocity, both with maximal effort. Mean values were taken at different ankle positions and also averaged over different ranges. A concentric action preceded by an eccentric action generated a torque value on an average about 100% larger than a concentric action alone. The EMG activity was lower or unchanged. It was concluded that the present method could be useful in the study of the stretch-shortening cycle in plantar flexion and in the testing of the behaviour of the elastic components in people with disabilities in the lower limbs.  相似文献   

5.
Electrically evoked twitch properties of the human plantarflexor muscles were measured with the muscles at a constant length (static) and during passive shortening and lengthening. A Kin-Com dynamometer system was used to passively move the ankle joint at 0.52 rad s-1 (30 degrees s-1), as well as to record the twitch responses which were elicited by supramaximal electric shocks applied over the tibial nerve in the popliteal fossa. In the lengthening and shortening conditions, twitches were evoked by triggering the shocks so that the twitch response occurred at a similar angular position for all three conditions. The lengthening twitch peak torque was about twice as large as that recorded for the shortening condition. There was, however, no statistical difference in the twitch time course in these three testing conditions. This twofold increase in the peak twitch torque during lengthening, compared to shortening, is much greater than the torque increase reported during eccentric, as compared to concentric maximal voluntary contractions. These findings suggest that a deactivation process of the contractile system occurs during muscle shortening, while in contrast, during passive lengthening a potentiation mechanism is acting, and that both these mechanisms are independent of volitional muscle activation. The present study is the first to demonstrate the possibility of electrically evoked contractions of human muscles during passive lengthening and shortening. We believe that the use of such evoked contractions may be promising for the study of contractile behaviour of human skeletal muscles during eccentric and concentric conditions.  相似文献   

6.
The purpose of this study was to investigate the effects of different stretch amplitudes (angular displacements) on the performance and electromyographic (EMG) activity during drop jumps (DJs). The AMTI force platform, the Biovision electrical goniometer, and EMG system were used to record the ground reaction forces, knee angular displacement, and the EMG signals of the rectus femoris. The EMG data were treated by different data-processing methods: the biphase and triphase data-processing methods. The results revealed that the short-stretch DJs had a larger passive force, a higher eccentric end force, a higher concentric average force, and a faster eccentric angular velocity showing a more efficient stretch-shortening cycle (SSC) mechanism in using elastic energy and reactive properties than the long-stretch DJs. Therefore, the short-stretch DJs are recommended in training for the SSC movement. However, the results of biphase data-processing EMG method did not support this conclusion because there was no significant difference between long-stretch DJs and short-stretch DJs by using the biphase data-processing method, whereas the triphase method did support this conclusion and demonstrated that short-stretch DJs are more efficient.  相似文献   

7.
When the prestretch intensity and concentric work are increased in stretch-shortening cycle (SSC) exercises, the utilization of the elastic energy can increase during the concentric phase. In order to further understand this process during SSC exercises, the interaction between fascicle-tendinous tissues (TT) of the vastus lateralis (VL) muscle was examined under different prestretch and rebound intensity drop jumps. Ten male subjects participated in the study. Direct VL fascicle lengths (N = 10) and in vivo patellar tendon force (N = 1) were measured together with the electromyographic (EMG) activity of VL during the trials. With increasing drop height but the same rebound height condition, the TT stretch increased during the early braking phase with a subsequent increase in its recoil during the early push-off phase. This occurred concomitantly with decreased fascicle shortening and EMG activation. However, with the increased rebound height but the same drop height condition, the fascicles were stretched less during the late braking phase with higher EMG activation. In this situation, TT could be stretched more by the tension provided by fascicles. Consequently, the TT recoil increased during the late push-off phase. These observations confirm that there can be an intensity specific fascicle-TT interaction during SSC exercises.  相似文献   

8.
Electromyographic (EMG) amplitude and mechanical tension are directly related during isometric contraction. Maximal voluntary isometric contractions are typically elicited through two different procedures; resisting a load, which is eccentric in nature, and contracting against an immovable object, which is concentric in nature. A wealth of literature exists indicating that EMG amplitude during concentric contractions is greater than that of eccentric contractions of the same magnitude. However, the effects of different methods to elicit isometric contraction on EMG amplitude have yet to be investigated. The purpose of this study was to compare EMG amplitudes under different loading configurations designed to elicit isometric muscle contraction. Twenty healthy volunteers (10 males and 10 females, age = 23 ± 2 yrs, height = 1.7 ± 0.09 m, mass = 69.9 + 16.8 kg) performed a maximal voluntary plantarflexion effort for which the vertical ground reaction force (GRFv) sampled from a force plate and surface EMG of the soleus were recorded. Participants then performed isometric plantarflexion at 20%, 30%, 40%, and 50% GRFvmax in a seated position, from a neutral ankle position, under two different counterbalanced isometric loading conditions (concentric and eccentric). For concentric loading conditions, the subject contracted against an immovable resistance to the specified %GRFv identified via visual and auditory feedback. For eccentric loading conditions, subjects contracted against an applied load placed on the distal anterior thigh that produced the specified %GRFv. This applied load had the tendency to force the ankle into dorsiflexion. Therefore, plantarflexion force, in an attempt to maintain the ankle in a neutral position, resisted lengthening of the plantarflexor musculature, thus representing eccentric loading during an isometric contraction. Mean EMG amplitude was compared across loading levels and types using a 2 (loading type: concentric, eccentric) × 4 (loading level: 20%, 30%, 40%, 50% GRFv) repeated-measures ANOVA. The main effect for loading level was significant (p = 0.007). However, the main effect for loading type, and the loading type × loading level interaction were non-significant (p > 0.05). The present findings provide evidence that isometric muscle contractions loaded in either concentric or eccentric manners elicit similar EMG amplitudes, and are therefore comparable in research settings.  相似文献   

9.
The purpose of this investigation was to compare children and adults of both genders with respect to torque-velocity, electromyogram (EMG)-velocity and torque-EMG relationships during maximal voluntary knee extensor muscle actions. Four groups of ten subjects each were studied comprising 11-year-old girls and boys and female and male physical education students (22–35 years). Maximal voluntary eccentric (lengthening) and concentric (shortening) actions of the knee extensors were performed at the constant velocities of 45, 90 and 180° · s–1. Average values for torque and EMG activity, recorded by surface electrodes from the quadriceps muscle, were taken for the mid 40° of the 80° range of motion. The overall shapes of the torque- and EMG-velocity relationships were similar for all four groups, showing effects of velocity under concentric (torque decrease and EMG increase) but not under eccentric conditions. Eccentric torques were always greater than velocity-matched concentric ones, whereas the eccentric EMG values were lower than the concentric ones at corresponding velocities. Torque output per unit EMG activity was clearly higher for eccentric than for concentric conditions and the difference was of similar magnitude for all groups. Thus, the torque-EMG-velocity relationships would appear to have been largely independent of gender and to be fully developed at a prepubertal age.  相似文献   

10.
Quadriceps weakness is prevalent with knee osteoarthritis (OA) and after total knee arthroplasty (TKA). To compensate for quadriceps dysfunction, patients often alter movement strategies. Little is known about muscle coordination during sit-to-stand (concentric) and stand-to-sit (eccentric) movements in the acute postoperative period. This investigation characterized the distribution of muscle activation between the concentric and eccentric phases during a five-time-sit-to-stand (FTSTS) movement in late stage OA and one month after TKA. Patients and healthy participants performed a FTSTS while recording bilateral ground reaction forces (GRFs) and electromyography (EMG). Concentric and eccentric ensemble averages of the GRF and EMG were calculated for the concentric and eccentric phases. Coactivation indices, integrated EMG, and GRF were calculated for each limb and phase. Patients demonstrated higher eccentric coactivation than the healthy group. Postoperative loading was higher in the nonsurgical limb. Postoperative quadriceps activity was lower in the concentric phase and higher in the eccentric phase than the healthy group. Higher coactivation in the patients resulted from sustained distribution of quadriceps activity throughout the eccentric phase. This indicated an inability to coordinate muscle firing when rapidly lowering to a chair and occurred despite unloading of the surgical limb. Although these patterns may serve as a protective strategy, they may also impede recovery of muscle function after TKA.  相似文献   

11.
The purpose of this study was to describe an electromyogram (EMG) pattern during a submaximal eccentric task in 7 subjects adapted to high-force chronic eccentric exercise and 6 subjects naive to eccentric exercise. The EMG in all subjects was quantified during identical submaximal (200 W) eccentric and concentric cycle ergometry tasks. The EMG of the eccentrically adapted subjects was decreased (p < 0.05) compared to the eccentrically naive subjects, in duration, amplitude, and intensity as evidenced by a decreased EMG during the pedal cycle. This decrease may be one component of the protective effect that results from progressively increasing repeated bouts of eccentric muscle work. Clients and patients transitioning to rigorous overload training should become adapted to high eccentric loads and forces to avoid injury and a potential delay in their strength and conditioning training regimens.  相似文献   

12.
In supracollicular decerebrate paralyzed adult rats, neural respiration was monitored by bilateral phrenic recordings. In the study of respiratory cycle timing, the effects of vagal afferent input (lung inflation) on respiratory phase durations resembled those seen in decerebrate cats. 1) Withholding lung inflation during neural inspiration (I) produced lengthening of I phase duration by 46% (mean, n = 11). 2) Maintaining lung inflation during neural expiration (E) produced lengthening of E phase duration by 112% (mean, n = 4). In the study of fast rhythms in inspiratory discharges, phrenic nerve autospectra and bilateral (left-right) phrenic coherences in 16 rats revealed two types of fast rhythm: 1) high-frequency oscillation (HFO), which had significant coherence peaks (n = 9, range 106-160 Hz, mean 132 Hz); and 2) medium-frequency oscillation (MFO), which had autospectral peaks but no distinct coherence peaks (n = 11, range 46-96 Hz, mean 66 Hz). These rhythms resembled MFOs and HFOs in the decerebrate cat, but the modal frequency range was about twice as large. In addition, these frequency values differed markedly from the 20-40 Hz of the rhythms found in earlier studies in neonatal in vitro preparations; the difference may be due to developmental immaturity.  相似文献   

13.
The aim of this investigation was to study the relationships among movement velocity, torque output and electromyographic (EMG) activity of the knee extensor muscles under eccentric and concentric loading. Fourteen male subjects performed maximal voluntary eccentric and concentric constant-velocity knee extensions at 45, 90, 180 and 360 degrees.s-1. Myoelectric signals were recorded, using surface electrodes, from the vastus medialis, vastus lateralis and rectus femoris muscles. For comparison, torque and full-wave rectified EMG signals were amplitude-averaged through the central half (30 degrees-70 degrees) of the range of motion. For each test velocity, eccentric torque was greater than concentric torque (range of mean differences: 20%-146%, P less than 0.05). In contrast, EMG activity for all muscles was lower under eccentric loading than velocity-matched concentric loading (7%-31%, P less than 0.05). Neither torque output nor EMG activity for the three muscles changed across eccentric test velocities (P greater than 0.05). While concentric torque increased with decreasing velocity, EMG activity for all muscles decreased with decreasing velocity (P less than 0.05). These data suggest that under certain high-tension loading conditions (especially during eccentric muscle actions), the neural drive to the agonist muscles was reduced, despite maximal voluntary effort. This may protect the musculoskeletal system from an injury that could result if the muscle was to become fully activated under these conditions.  相似文献   

14.
The aim of the study was to evaluate maximal isometric (dynamometer based {MVC-NORM} and isometric squat {MIS-NORM}) and sub-maximal EMG normalisation methods (60%-NORM, 70%-NORM, 80%-NORM) for dynamic back squat exercise (DSQ-EX). The absolute reliability (limits of agreement {LOA}, coefficient of variation {CV%}), relative reliability (intra-class correlation coefficient {ICC}) and sensitivity of each method was assessed. Ten resistance-trained males attended four sessions. Session one assessed maximum back squat strength (three repetition maximum {3RM}). In the remaining three sessions Vastus lateralis (VL) and Bicep femoris (BF) EMG were measured whilst participants completed normalisation tasks and DSQ-EX sets at 65%, 75%, 85% and 95% of 3RM. MIS-NORM produced lower intra-participant CV% compared to MVC-NORM. 80%-NORM produced lower intra-participant CV% than other sub-maximal methods for VL and BF during eccentric and concentric phases. 80%-NORM also produced narrower 95% LOA results than all other normalisation methods. The MIS-NORM method displayed higher ICC values for both muscles during eccentric and concentric phases. The 60%-NORM and 70%-NORM methods were the most sensitive for VL and BF during eccentric and concentric phases. Only normalisation methods for the concentric action of the VL enhanced sensitivity compared to unnormalised EMG. Overall, dynamic normalisation methods demonstrated better absolute reliability and sensitivity for reporting VL and BF EMG within the current study compared to maximal isometric methods.  相似文献   

15.
The stretch-shortening cycle (SSC) is a combination of eccentric and concentric muscle actions. The purpose of the study was to compare the SSC of four different groups comprising a total of 29 women and 30 men, divided according to sex and age (i.e. 20–40 years and 70–85 years). A KIN-COM dynamometer was used for strength measurements of the plantar flexion of the right foot. An electromyogram (EMG) from the gastroenemius muscle was recorded simultaneously. Maximal voluntary concentric muscle actions at 120° · s–1 and 240° · s–1 with and without prior eccentric muscle actions were performed. Average torque values of the range of motion between 90° and 99° of the ankle joint were extracted. All four groups were significantly stronger at 120° · s–1 than at 240° · s–1 for pure concentric actions. The average torque values of the concentric phases in the SSC movement were significantly higher than the torque values for pure concentric actions in all four groups and at both velocities. The EMG was significantly lower or unchanged in the SSC movement compared to a pure concentric action in all groups. A larger percentage increase in torque with prior eccentric action was found in young women compared to young men at both velocities. Our results suggested that the enhanced performance was even more marked when a concentric action was preceded by an eccentric action in the young women than in the young men, probably due to better utilization of elastic forces, but we could not demonstrate any age-related differences in enhanced performance with SSC.  相似文献   

16.
The purpose of this study was to investigate the activation of the hip flexor and abdominal muscles during an active straight leg raise (ASLR) to end range of hip flexion. Data were recorded from nine healthy men. Fine-wire electromyography (EMG) electrodes were inserted into psoas major (PM), and surface electrodes were placed over rectus femoris (RF), rectus abdominis, obliquus externus abdominis (OE), and obliquus internus abdominis/transversus abdominis (OI/TrA). EMG and kinematic data were obtained during concentric, hold (at end range) and eccentric phases of an ASLR. Concentric and eccentric movements were divided into three phases (early, mid, and late). Onsets of EMG relative to the onset of the ALSR movement and EMG amplitudes in each phase were compared between muscles. Onsets of the PM (–33 ± 245 ms) and RF (-3 ± 119 ms) EMG prior to leg elevation were significantly earlier than those of the OE and OI/TrA. PM EMG showed highest activation in the late concentric, hold, early eccentric phase, and was significantly higher than RF EMG. OI/TrA EMG was significantly greater in mid and late concentric, hold, and early eccentric phase than other phases. During the ASLR, unlike RF, PM EMG continues to increase towards the end range of hip flexion. Activation of OI/TrA muscle may be involved in control trunk and pelvic movement.  相似文献   

17.
The objective of this study was to examine the superficial quadriceps femoris (QF) muscle electromyogram (EMG) during fatiguing knee extensions. Thirty young adults were evaluated for their one-repetition maximum (1RM) during a seated, right-leg, inertial knee extension. All subjects then completed a single set of repeated knee extensions at 50% 1RM, to failure. Subjects performed a knee extension (concentric phase), held the weight with the knee extended for 2s (isometric phase), and lowered the weight in a controlled manner (eccentric phase). Raw EMG of the vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF) muscles were full-wave rectified, integrated and normalized to the 1RM EMG, for each respective phase and repetition. The EMG median frequency (f(med)) was computed during the isometric phase. An increase in QF muscle EMG was observed during the concentric phase across the exercise duration. VL EMG was greater than the VM and RF muscles during the isometric phase, in which no significant changes occurred in any of the muscles across the exercise duration. A significant decrease in EMG across the exercise duration was observed during the eccentric phase, with the VL EMG greater than the VM and RF muscles. A greater decrease in VL and RF muscle f(med) during the isometric phase, than the VM muscle, was observed with no gender differences. The findings demonstrated differential recruitment of the superficial QF muscle, depending on the contraction mode during dynamic knee extension exercise, where VL muscle dominance appears to manifest across the concentric-isometric-eccentric transition.  相似文献   

18.
Ten male subjects were tested to determine the effects of muscle fatigue upon the activation pattern of the two main ankle extensor muscles, the 'slow-twitch' soleus (SOL) and the relatively 'fast-twitch' medial gastrocnemius (MG), during a fatiguing 60-s trial of hopping to maximal height. The myoelectric signals from SOL and MG were recorded together with the vertical ground reaction force signal and analysed by means of a computer-aided electromyograph (EMG) contour analysis, i.e. two-dimensional frequency distributions were obtained relating the activation patterns of the two synergists. The EMGs were also full-wave rectified and integrated (IEMG) according to three phases of the hopping movement (PRE, pre-activation phase; ECC, eccentric phase; CON, concentric phase). Results indicated that there were significant decreases (P less than 0.01) in the peak ground reaction force, the height of hopping and the mechanical power per unit body weight at the end of the fatiguing contractions. These decreases in mechanical parameters were accompanied by significant (P less than 0.01) decreases in all three phases of MG IEMG while SOL IEMG showed no such significant declines, except in the CON phase. Thus, the decreased mechanical parameters could in large part be accounted for by the substantial and selective decline of the excitation level of the relatively fast-twitch MG muscle. Our data suggest that the centrally mediated pre-activation of the fatiguable MG muscle as well as the MG activation during the eccentric phase, which is largely controlled by supraspinal inputs and stretch-reflex modulation, are most affected by fatigue changes during repeated maximal stretch/shortening cycles of the ankle extensors.  相似文献   

19.
Five men performed submaximal isometric, concentric or eccentric contractions until exhaustion with the left arm elbow flexors at respectively 50%, 40% and 40% of the prefatigued maximal voluntary contraction force (MVC). Subsequently, and at regular intervals, the surface electromyogram (EMG) during 30-s isometric test contractions at 40% of the prefatigued MVC and the muscle performance parameters (MVC and the endurance time of an isometric endurance test at 40% prefatigued MVC) were recorded. Large differences in the surface EMG response were found after isometric or concentric exercise on the one hand and eccentric exercise on the other. Eccentric exercise evoked in two of the three EMG parameters [the EMG amplitude (root mean square) and the rate of shift of the EMG mean power frequency (MPF)] the greatest (P less than 0.001) and longest lasting (up to 7 days) response. The EMG response after isometric or concentric exercise was smaller and of shorter duration (1-2 days). The third EMG parameter, the initial MPF, had already returned to its prefatigued value at the time of the first measurement, 0.75 h after exercise. The responses of EMG amplitude and of rate of MPF shift were similar to the responses observed in the muscle performance parameters (MVC and the endurance time). Complaints of muscle soreness were most frequent and severe after the eccentric contractions. Thus, eccentric exercise evoked the greatest and longest lasting response both in the surface EMG signal and in the muscle performance parameters.  相似文献   

20.
The interaction between the semitendinosus muscle and both hip and knee joint angles was examined in the frog (Rana pipiens) hindlimb. Sarcomere length was measured by laser diffraction in passive muscle during hip and knee rotation. A model was then developed to predict semitendinosus sarcomere length as a function of both hip and knee flexion angle. Based on published frog muscle fiber length-tension [Gordon, A. M. et al., J. Physiol. 184, 170-192 (1966)] and force-velocity [Edman, K. A. P., J. Physiol. 291, 143-159 (1979)] properties, and published joint angles during hopping [Calow, L. J. and Alexander, R. McN., J. Zool. (Lond.) 171, 293-321 (1973)], muscle sarcomere length, force and hip and knee torque during a hop were predicted. The semitendinosus muscle generally operated on the descending limb of the length-tension curve at normal joint angle combinations. The model predicted that, during a single coordinated movement, a period of sarcomere shortening (concentric) was followed by a period of sarcomere lengthening (eccentric). Based on calculated torque profiles at the hip and knee joints, this study suggested that the semitendinosus muscle probably functions more as a hip extensor than a knee flexor. In addition, based on the nature of the shortening-lengthening cycle, the semitendinosus may act to mechanically link the force of knee extension to hip extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号