首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Only two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that influenza virus becomes resistant to these antiviral drugs and spreads in the human population. The 2009 pandemic A/H1N1 influenza virus is naturally resistant to adamantanes. Recently a novel neuraminidase I223R mutation was identified in an A/H1N1 virus showing cross-resistance to the neuraminidase inhibitors oseltamivir, zanamivir and peramivir. However, the ability of this virus to cause disease and spread in the human population is unknown. Therefore, this clinical isolate (NL/2631-R223) was compared with a well-characterized reference virus (NL/602). In vitro experiments showed that NL/2631-I223R replicated as well as NL/602 in MDCK cells. In a ferret pathogenesis model, body weight loss was similar in animals inoculated with NL/2631-R223 or NL/602. In addition, pulmonary lesions were similar at day 4 post inoculation. However, at day 7 post inoculation, NL/2631-R223 caused milder pulmonary lesions and degree of alveolitis than NL/602. This indicated that the mutant virus was less pathogenic. Both NL/2631-R223 and a recombinant virus with a single I223R change (recNL/602-I223R), transmitted among ferrets by aerosols, despite observed attenuation of recNL/602-I223R in vitro. In conclusion, the I223R mutated virus isolate has comparable replicative ability and transmissibility, but lower pathogenicity than the reference virus based on these in vivo studies. This implies that the 2009 pandemic influenza A/H1N1 virus subtype with an isoleucine to arginine change at position 223 in the neuraminidase has the potential to spread in the human population. It is important to be vigilant for this mutation in influenza surveillance and to continue efforts to increase the arsenal of antiviral drugs to combat influenza.  相似文献   

2.
Human influenza viruses can be isolated efficiently from clinical samples using Madin-Darby canine kidney (MDCK) cells. However, this process is known to induce mutations in the virus as it adapts to this non-human cell-line. We performed a systematic study to record the pattern of MDCK-induced mutations observed across the whole influenza A/H3N2 genome. Seventy-seven clinical samples collected from 2009-2011 were included in the study. Two full influenza genomes were obtained for each sample: one from virus obtained directly from the clinical sample and one from the matching isolate cultured in MDCK cells. Comparison of the full-genome sequences obtained from each of these sources showed that 42% of the 77 isolates had acquired at least one MDCK-induced mutation. The presence or absence of these mutations was independent of viral load or sample origin (in-patients versus out-patients). Notably, all the five hemagglutinin missense mutations were observed at the hemaggutinin 1 domain only, particularly within or proximal to the receptor binding sites and antigenic site of the virus. Furthermore, 23% of the 77 isolates had undergone a MDCK-induced missense mutation, D151G/N, in the neuraminidase segment. This mutation has been found to be associated with reduced drug sensitivity towards the neuraminidase inhibitors and increased viral receptor binding efficiency to host cells. In contrast, none of the neuraminidase sequences obtained directly from the clinical samples contained the D151G/N mutation, suggesting that this mutation may be an indicator of MDCK culture-induced changes. These D151 mutations can confound the interpretation of the hemagglutination inhibition assay and neuraminidase inhibitor resistance results when these are based on MDCK isolates. Such isolates are currently in routine use in the WHO influenza vaccine and drug-resistance surveillance programs. Potential data interpretation miscalls can therefore be avoided by careful exclusion of such D151 mutants after further sequence analysis.  相似文献   

3.
Effective antiviral drugs are essential for early control of an influenza pandemic. It is therefore crucial to evaluate the possible threat posed by neuraminidase (NA) inhibitor-resistant influenza viruses with pandemic potential. Four NA mutations (E119G, H274Y, R292K, and N294S) that have been reported to confer resistance to NA inhibitors were each introduced into recombinant A/Vietnam/1203/04 (VN1203) H5N1 influenza virus. For comparison, the same mutations were introduced into recombinant A/Puerto Rico/8/34 (PR8) H1N1 influenza virus. The E119G and R292K mutations significantly compromised viral growth in vitro, but the H274Y and N294S mutations were stably maintained in VN1203 and PR8 viruses. In both backgrounds, the H274Y and N294S mutations conferred resistance to oseltamivir carboxylate (50% inhibitory concentration [IC(50)] increases, >250-fold and >20-fold, respectively), and the N294S mutation reduced susceptibility to zanamivir (IC(50) increase, >3.0-fold). Although the H274Y and N294S mutations did not compromise the replication efficiency of VN1203 or PR8 viruses in vitro, these mutations slightly reduced the lethality of PR8 virus in mice. However, the VN1203 virus carrying either the H274Y or N294S mutation exhibited lethality similar to that of the wild-type VN1203 virus. The different enzyme kinetic parameters (V(max) and K(m)) of avian-like VN1203 NA and human-like PR8 NA suggest that resistance-associated NA mutations can cause different levels of functional loss in NA glycoproteins of the same subtype. Our results suggest that NA inhibitor-resistant H5N1 variants may retain the high pathogenicity of the wild-type virus in mammalian species. Patients receiving NA inhibitors for H5N1 influenza virus infection should be closely monitored for the emergence of resistant variants.  相似文献   

4.
The results of molecular analysis of 15 influenza A(H3N2) and 17-A(H1N1) epidemic strains isolated in the Russian Federation in 1995-2007 are described. The analysis on the M2 and neuraminidase influenza A virus genes was performed. The M2 sequences analysis among the remantadin resistant viruses demonstrated the S31N substitution in all strains. Besides S31N substitution, additional mutations were detected in both proteins. Mutations associated with S31N substitution were detected in each virus subtype, which may be considered as new markers for the identification of remantadin-resistant strains. The sequencing of the NA segments from all viruses showed no amino acid substitutions known to cause resistance to neuraminidase inhibitors, which indicates susceptibility to NA inhibitors among the strains.  相似文献   

5.
A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1-H13, H15, H16) and neuraminidase (N1-N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus.  相似文献   

6.

Background

HIV-1 subtype B is the most prevalent in developed countries and, consequently, it has been extensively studied. On the other hand, subtype C is the most prevalent worldwide and therefore is a reasonable target for future studies. Here we evaluate the acquisition of resistance and the viability of HIV-1 subtype B and C RT clones from different isolates that were subjected to in vitro selection pressure with zidovudine (ZDV) and lamivudine (3TC).

Methods/Principal Findings

MT4 cells were infected with chimeric virus pseudotyped with RT from subtype B and C clones, which were previously subjected to serial passage with increasing concentrations of ZDV and 3TC. The samples collected after each passage were analyzed for the presence of resistance mutations and VL. No differences were found between subtypes B and C in viral load and resistance mutations when these viruses were selected with 3TC. However, the route of mutations and the time to rebound of subtype B and C virus were different when subjected to ZDV treatment. In order to confirm the role of the mutations detected, other clones were generated and subjected to in vitro selection. RT subtype B virus isolates tended to acquire different ZDV resistance mutations (Q151M and D67N or T215Y, D67D/N and F214L) compared to subtype C (D67N, K70R, T215I or T215F).

Conclusions/Significance

This study suggests that different subtypes have a tendency to react differently to antiretroviral drug selection in vitro. Consequently, the acquisition of resistance in patients undergoing antiretroviral therapy can be dependent on the subtypes composing the viral population.  相似文献   

7.
Bouvier NM  Lowen AC  Palese P 《Journal of virology》2008,82(20):10052-10058
Influenza viruses resistant to the neuraminidase (NA) inhibitor oseltamivir arise under drug selection pressure both in vitro and in vivo. Several mutations in the active site of the viral NA are known to confer relative resistance to oseltamivir, and influenza viruses with certain oseltamivir resistance mutations have been shown to transmit efficiently among cocaged ferrets. However, it is not known whether NA mutations alter aerosol transmission of drug-resistant influenza virus. Here, we demonstrate that recombinant human influenza A/H3N2 viruses without and with oseltamivir resistance mutations (in which NA carries the mutation E119V or the double mutations E119V I222V) have similar in ovo growth kinetics and infectivity in guinea pigs. These viruses also transmit efficiently by the contact route among cocaged guinea pigs, as in the ferret model. However, in an aerosol transmission model, in which guinea pigs are caged separately, the oseltamivir-resistant viruses transmit poorly or not at all; in contrast, the oseltamivir-sensitive virus transmits efficiently even in the absence of direct contact. The present results suggest that oseltamivir resistance mutations reduce aerosol transmission of influenza virus, which could have implications for public health measures taken in the event of an influenza pandemic.  相似文献   

8.
Two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that antiviral resistant viruses emerge and spread in the human population. The 2009 pandemic H1N1 virus is already resistant to adamantanes. Recently, a novel neuraminidase inhibitor resistance mutation I223R was identified in the neuraminidase of this subtype. To understand the resistance mechanism of this mutation, the enzymatic properties of the I223R mutant, together with the most frequently observed resistance mutation, H275Y, and the double mutant I223R/H275Y were compared. Relative to wild type, KM values for MUNANA increased only 2-fold for the single I223R mutant and up to 8-fold for the double mutant. Oseltamivir inhibition constants (KI) increased 48-fold in the single I223R mutant and 7500-fold in the double mutant. In both cases the change was largely accounted for by an increased dissociation rate constant for oseltamivir, but the inhibition constants for zanamivir were less increased. We have used X-ray crystallography to better understand the effect of mutation I223R on drug binding. We find that there is shrinkage of a hydrophobic pocket in the active site as a result of the I223R change. Furthermore, R223 interacts with S247 which changes the rotamer it adopts and, consequently, binding of the pentoxyl substituent of oseltamivir is not as favorable as in the wild type. However, the polar glycerol substituent present in zanamivir, which mimics the natural substrate, is accommodated in the I223R mutant structure in a similar way to wild type, thus explaining the kinetic data. Our structural data also show that, in contrast to a recently reported structure, the active site of 2009 pandemic neuraminidase can adopt an open conformation.  相似文献   

9.
The recent H1N1 influenza pandemic has attracted worldwide attention due to the high infection rate. Oseltamivir is a new class of anti-viral agent approved for the treatment and prevention of influenza infections. The principal target for this drug is a virus surface glycoprotein, neuraminidase (NA), which facilitates the release of nascent virus and thus spreads infection. Until recently, only a low prevalence of neuraminidase inhibitor (NAI) resistance (<1 %) had been detected in circulating viruses. However, there have been reports of significant numbers of A (H1N1) influenza strains with a N294S neuraminidase mutation that was highly resistant to the NAI, oseltamivir. Hence, in the present study, we highlight the effect of point mutation-induced oseltamivir resistance in H1N1 subtype neuraminidases by molecular simulation approach. The docking analysis reveals that mutation (N294S) significantly affects the binding affinity of oseltamivir with mutant type NA. This is mainly due to the decrease in the flexibility of binding site residues and the difference in prevalence of hydrogen bonds in the wild and mutant structures. This study throws light on the possible effects of drug-resistant mutations on the large functionally important collective motions in biological systems.  相似文献   

10.
11.
Neuraminidases from different subtypes of influenza virus are characterized by the absence of serological cross-reactivity and an amino acid sequence homology of approximately 50%. The three-dimensional structure of the neuraminidase antigen of subtype N9 from an avian influenza virus (A/tern/Australia/G70c/75) has been determined by X-ray crystallography and shown to be folded similarly to neuraminidase of subtype N2 isolated from a human influenza virus. This result demonstrates that absence of immunological cross-reactivity is no measure of dissimilarity of polypeptide chain folding. Small differences in the way in which the subunits are organized around the molecular fourfold axis are observed. Insertions and deletions with respect to subtype N2 neuraminidase occur in four regions, only one of which is located within the major antigenic determinants around the enzyme active site.  相似文献   

12.
Sequence of the N2 neuraminidase from influenza virus A/NT/60/68.   总被引:5,自引:3,他引:2       下载免费PDF全文
The complete sequence of the neuraminidase gene of influenza virus A/NT/60/68 (N2 subtype) was determined following cloning of full length complementary DNA into pBR322. Comparison of the predicted amino acid sequence with a closely related neuraminidase from A/Udorn/72 suggests that point mutations over an extensive region of the primary sequence can contribute to antigenic drift, although the region between amino acid residues 308 and 371 may be particularly significant.  相似文献   

13.
The emergence of drug resistant variants of the influenza virus has led to a need to identify novel and effective antiviral agents. As an alternative to synthetic drugs, the consolidation of empirical knowledge with ethnopharmacological evidence of medicinal plants offers a novel platform for the development of antiviral drugs. The aim of this study was to identify plant extracts with proven activity against the influenza virus. Extracts of fifty medicinal plants, originating from the tropical rainforests of Borneo used as herbal medicines by traditional healers to treat flu-like symptoms, were tested against the H1N1 and H3N1 subtypes of the virus. In the initial phase, in vitro micro-inhibition assays along with cytotoxicity screening were performed on MDCK cells. Most plant extracts were found to be minimally cytotoxic, indicating that the compounds linked to an ethnomedical framework were relatively innocuous, and eleven crude extracts exhibited viral inhibition against both the strains. All extracts inhibited the enzymatic activity of viral neuraminidase and four extracts were also shown to act through the hemagglutination inhibition (HI) pathway. Moreover, the samples that acted through both HI and neuraminidase inhibition (NI) evidenced more than 90% reduction in virus adsorption and penetration, thereby indicating potent action in the early stages of viral replication. Concurrent studies involving Receptor Destroying Enzyme treatments of HI extracts indicated the presence of sialic acid-like component(s) that could be responsible for hemagglutination inhibition. The manifestation of both modes of viral inhibition in a single extract suggests that there may be a synergistic effect implicating more than one active component. Overall, our results provide substantive support for the use of Borneo traditional plants as promising sources of novel anti-influenza drug candidates. Furthermore, the pathways involving inhibition of hemagglutination could be a solution to the global occurrence of viral strains resistant to neuraminidase drugs.  相似文献   

14.
Presently, the resistance of Influenza A virus isolates causes great difficulty for the prevention and treatment of influenza A virus infection. It is important to establish a drug-resistance detection method for epidemiological study and personalized medicine in the clinical setting. Consequently, a cost-effective oligonucleotide microarray visualization method, which was based on quantum dot-catalyzed silver deposition, was developed and evaluated for the simultaneous detection of neuraminidase H275Y and E119V; matrix protein 2 V27A and S31N mutations of influenza A (H3N2), seasonal influenza A (H1N1), and 2009 influenza A (H1N1). Then, 307 clinical throat swab specimens were detected and the drug-resistance results showed that 100% (17/17) of influenza A (H3N2) and 100% (259/259) of 2009 influenza A (H1N1) samples were resistant to amantadine and susceptible to oseltamivir; and 100% (5/5) of seasonal influenza A (H1N1) samples were resistant to both amantadine and oseltamivir.  相似文献   

15.
Influenza viruses are responsible for respiratory illness with significant morbidity and mortality. To curb the disease, two-pronged attack on the virus, therapeutic and prophylactic, is being actively pursued. The therapeutic use of existing anti-influenza drugs, such as amantadine and rimantadine, is limited by their significant adverse side effect, emergence of resistant viral strains, and lack of activity against influenza B virus. A new class of antiviral agents designed to inhibit influenza neuraminidase are currently under active development for use in the prophylaxis and treatment of influenza A and B virus infections. Two of these compounds, zanamivir (GG167) and GS4104 have reached clinical trials. Limitations in the effectiveness and application of inactivated vaccines have stimulated development of alternative approaches to influenza immunization. One such approach is a live, intranasally administered vaccine, attenuated by cold-adaptation of a master strain with subsequent genetic reassortment with circulating wild-type strains. Recently developed reverse-genetics techniques have made it possible to use RNA viruses as vector. Besides DNA viral vectors, live influenza virus vectors may emerge as a useful alternative for the vaccination against different pathogens.  相似文献   

16.
The surface proteins hemagglutinin (HA) and neuraminidase (NA) of human influenza A virus evolve under selection pressures to escape adaptive immune responses and antiviral drug treatments. In addition to these external selection pressures, some mutations in HA are known to affect the adaptive landscape of NA, and vice versa, because these two proteins are physiologically interlinked. However, the extent to which evolution of one protein affects the evolution of the other one is unknown. Here we develop a novel phylogenetic method for detecting the signatures of such genetic interactions between mutations in different genes – that is, inter-gene epistasis. Using this method, we show that influenza surface proteins evolve in a coordinated way, with mutations in HA affecting subsequent spread of mutations in NA and vice versa, at many sites. Of particular interest is our finding that the oseltamivir-resistance mutations in NA in subtype H1N1 were likely facilitated by prior mutations in HA. Our results illustrate that the adaptive landscape of a viral protein is remarkably sensitive to its genomic context and, more generally, that the evolution of any single protein must be understood within the context of the entire evolving genome.  相似文献   

17.
Antiserum specific for influenza A(2) neuraminidase was produced by immunization of rabbits with the purified enzyme which had been isolated by electrophoresis from the proteins of a detergent-disrupted A(0)A(2) influenza virus recombinant [X-7 (F1)]. This recombinant contained hemagglutinin of the A(0) subtype and A(2) neuraminidase. Antiserum to the isolated A(2) neuraminidase did not react in any of four serological tests with A(0) or A(2) subtype viruses that lacked the A(2) enzyme. In contrast, the antiserum inhibited the neuraminidase activity only of wild-type and recombinant viruses containing the A(2) enzyme, regardless of the nature of their hemagglutinin proteins. The antiserum caused hemagglutination-inhibition of some, but not all, viruses bearing the A(2) enzyme, and it reduced the plaque size or plaque number of all viruses tested that contained A(2) neuraminidase. In the chick embryo and in cell culture, low dilutions of antiserum reduced the yield of virus. True neutralization of virus in the chick embryo did not occur. We conclude that an antiserum specific for A(2) neuraminidase influenced the yield and release of virus from influenza virus-infected cells.  相似文献   

18.
H5N1 is a subtype of the influenza A virus that can cause disease in humans and many other animal species. Oseltamivir (Tamiflu) is a potent and selective antiviral drug employed to fight the flu virus in infected individuals by inhibiting neuraminidase (NA), a flu protein responsible for the release and spread of the progeny virions. However, oseltamivir resistance has become a critical problem. In particular, influenza strains with a R292K NA mutation are highly resistant to the oseltamivir. Though the biological functions of the mutations have previously been characterized, the structural basis behind the reduced catalytic activity and reduced protein level is not clear. In this study, molecular docking and molecular dynamics (MD) approach were employed to investigate the structural and dynamical effects throughout the protein structure and specifically, at the drug-binding pocket. Furthermore, potential of mean force was analyzed using explicit solvent MD simulations with the umbrella sampling method to explore the free energy of binding. It is believed that this study provides valuable guidance for the resistance management of oseltamivir and designing of more potent antiviral inhibitor.  相似文献   

19.
Fine specificity analysis of human influenza-specific cloned cell lines   总被引:1,自引:0,他引:1  
Influenza-specific human-T-cell clones, proliferating in the presence of virus-infected cells with restriction by class II molecules and displaying class II-restricted CTL activity or specific helper activity in antibody synthesis, have been analyzed for antigenic specificities. All of them were obtained by in vitro stimulation against influenza A/Texas virus. In all cases the virus specificity appeared identical in cytolytic and proliferative responses. Three of the clones were broadly cross-reactive, recognizing all or almost all type A influenza strains. The three remaining clones were subtype specific when tested with human strains and recognized the surface glycoproteins of influenza virus. One of these lines reacted with an epitope of the neuraminidase N2 while the other two recognized the hemagglutinin H3. By using a large panel of mammalian and avian influenza strains, it can be demonstrated that hemagglutinin-specific human T cells can recognize a cross-reacting determinant shared by H3 and H4 subtypes of hemagglutinin which has never been detected with antibodies.  相似文献   

20.
Microarray for influenza A neuraminidase subtyping was presented. Selection of oligoprobes proceeded in two steps. First step included selection of peptides specific for each subtype of neuraminidase. At the second step oligoprobes were calculated using found peptides structures with the subsequent additional selection of the most specific and representative probes. From 19 to 24 probes were used for determination of each subtype of neuraminidase. Microchip testing for 19 samples with the most widespread types (N1 and N2) specifies in unequivocal definition 18 of them and only one isolate has not been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号