首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
3-Aminobenzamide and benzamide, two potent inhibitors of poly-(ADP-ribose)-polymerase increase the frequencies of SCEs in Chinese hamster ovary cells in a dose-dependent manner. SCEs were studied in cells in which the inhibitors were present either during the first cell cycle or the second cell cycle or both. Most of the induced SCEs were found to be formed during the second cell cycle in which BU-containing DNA was used as template for DNA synthesis. In cells which were pregrown for 4 cell cycles in the presence of BrdUrd, in order to obtain both sister chromatids bifiliarly substituted with BU in their DNA, it was found that the presence of inhibitor even in the first cell cycle increased the frequencies of SCEs. It is concluded that the incorporated BrdUrd plays an important role in the origin of spontaneous and induced SCEs. 3-Aminobenzamide alone or benzamide in the presence of BrdUrd during culture, did not increase the frequencies of mutations to HGPRT? in these cells.  相似文献   

2.
B K Vig 《Mutation research》1979,61(2):309-317
Chinese hamster cells, M-3, were treated with BLM (1--4 micrograms/ml) for 30 min to 1 h at 37 degrees or 43 degrees C. After treatment, the cells were reincubated at 37 degrees until recovery. The material treated at 43 degrees showed increased damage expressed as chromosome and chromatid-type breaks and exchanges. Since the amount of BLM entering the cell at 37 degrees is supposedly similar to that which enters the cell at 43 degrees, the enhanced damage is the result of true synergism, and not the facilitation of the drug's entry into the cell.  相似文献   

3.
In contrast with earlier report on the induction of sister-chromatid exchanges (SCEs) by SH compounds in cell lines of the Chinese hamster, cysteine, cysteamine and cystamine did not cause an increase of the SCE frequency in human lymphocyte cultures. Differences in the treatment protocols or variations of the Brd Urd concentration had no effect on the induction of SCEs by these substances. The inclusion of H2O2 and comparative investigations with V79 cells of the Chinese hamster showed that the probable reason for the SCE induction by SH compounds is the inability of the cells to degrade H2O2.Furthermore, for cystamine it became clear that additional effects must exist besides the induction of SCEs through H2O2.The present study underlines the fact that the examination of a substance within one cell system does not necessarily permit a reliable statement about the DNA-damaging property of this substance.  相似文献   

4.
On the mechanism of bromouracil-induced mutagenesis   总被引:3,自引:0,他引:3  
Bromouracil (BU)-induced mutagenesis of λC17 am o8 phage, in relation to the recombination systems of phage (red) or bacteria (rec), was studied. The mutations investigated were amam+. For efficient BU-induced mutagenesis, red or recA genes as well as bacterial lex gene functions, known to be involved in UV-induced mutagenesis, were required. This suggests a common mechanism or some common step(s) in UV- and BU-induced mutagenesis. Moreover, a several-fold increase was observed in the number of mutants induced by BU in the excision-repair-deficient strain (uvrA), implying that incorporated BU induces some premutational lesions that are recognized and repaired by excision-repair enzymes. A hypothesis on the possible mechanism of BU-induced mutagenesis is proposed, which assumes a common mechanism for UV- and BU-induced mutagenesis, involving recombination repair processes. Incorporation of a tautomeric or ionized form of BU is considered only as a premutational change in DNA activating the dark-repair mechanisms in cells. The observation that BU enhances the frequency of recombination in λ phages also supports teh idea that recombination processes are involved in BU-induced mutagenesis.  相似文献   

5.
A temperature-sensitive DNA synthesis mutant of Haemophilus influenzae (strain dna9) was treated with the N-nitroso compound N-nitrosocarbaryl, then incubated at the permissive (36°) and nonpermissive (41°) temperatures. At various times lysates were made and used to transform a second culture to novobiocin resistance (a measure of the extent of mutation fixation). At the permissive temperature mutation fixation continued approximately linearly during at least half of the first round of DNA replication after treatment with N-nitrosocarbaryl. In the absence of DNA replication (41°), most but not all of the mutation fixation was eliminated. The nonreplicative type of mutation fixation was greater after treatment with a higher concentration of N-nitrosocarbaryl. The data indicate that premutational lesions occur over the entire chromosome and that the bulk of the mutation fixation requires DNA replication, but that a process independent of replication, quite possibly an erro-prone repair system, also is responsible for part of the mutation fixation in cells exposed to alkylating agents.When strain dna9 was treated with N-nitrosocarbaryl and then incubated at 41° for some time (stopping DNA replication and the bulk of the mutation fixation) before being grown at 36°, a large decrease in the final frequency was seen. This suggests that a repair mechanism still functional in the absence of DNA replication is capable of removing premutational lesions from H. influenzae DNA.  相似文献   

6.
Inosine triphosphate pyrophosphatases, which are ubiquitous house-cleaning enzymes, hydrolyze noncanonical nucleoside triphosphates (inosine triphosphate (ITP) and xanthosine triphosphate (XTP)) and prevent the incorporation of hypoxanthine or xanthine into nascent DNA or RNA. Here we present the 1.5-Å-resolution crystal structure of the inosine triphosphate pyrophosphatase RdgB from Escherichia coli in a free state and in complex with a substrate (ITP + Ca2 +) or a product (inosine monophosphate (IMP)). ITP binding to RdgB induced a large displacement of the α1 helix, closing the enzyme active site. This positions the conserved Lys13 close to the bridging oxygen between the α- and β-phosphates of the substrate, weakening the Pα-O bond. On the other side of the substrate, the conserved Asp69 is proposed to act as a base coordinating the catalytic water molecule. Our data provide insight into the molecular mechanisms of the substrate selectivity and catalysis of RdgB and other ITPases.  相似文献   

7.
8.
9.
10.
Samples of two human livers taken during operation of kidney donor patients were processed for microsome fractions and used for metabolization of cyclophosphamide (CP) and dimethylnitrosamine (DMN) in combination with the NADPH-generating system. Rat-liver microsomes were checked for comparison. Induction of chromatid aberrations and sister-chromatid exchanges in a newly isolated clone of Chinese hamster fibroblasts served as indicators of activity. Human S-9 fractions standardized on protein content showed strong variations of CP and DMN activation. Whereas liver microsomes of one patient (who also suffered from Gaucher's disease) were highly active for both pre-carcinogens and metabolized DMN at the same level as the uninduced rat-liver microsomes, the S-9 fraction from the second patient failed to activate CP, but was distinctly positive for DMN. It is suggested that samples of liver and other organs of renal transplant donors might be a practicable source of freshly prepared human microsome fractions usable in biochemical, genetic and carcinogenetic studies. Problems concerning the extrapolation of results are discussed.  相似文献   

11.
Following the observation that the nucleoside pre-treatment reduced the radiation-induced dominant lethality in the post-meiotic germ cells, similar experiments were conducted using the same treatment conditions to study the influence of the nucleoside(s) pre-treatment on the radiation-induced (1.2 kR) incidence of sex-linked recessive lethals and translocation events in the post-meiotic male germ cells of 1-day-old D. melanogaster. The nucleoside pre-treatment reduced the translocation frequency (not statistically significant) and the lethal mutation frequency (statistically significant) in the post-meiotic cells (pre-injection DNA synthesis cells) especially in the mature sperms sampled in brood a (br a). The radio-protective effect of the nucleosides on the mature sperms was confirmed using 7-day-old virgin males and different radiation doses (2.4 kR and 3.6 kR).The frequency of lethal mutation was lowest when irradiation was preceded by the injection of an equimolar solution of thymidine (TdR), deoxyadenosine (AdR), deoxycytidine (CdR) and deoxyguanosine (GdR). However, when the nucleosides were injected after irradiation (within 10–30 min) there was no change in the yield of radiation-induced lethals.The possible mechanisms for the radioprotective action of the nucleosides in the post-meiotic germ cells such as (a) “protection” by a radiochemical action of nucleosides competing for short-lived radicals that might otherwise cause damage to DNA and (b) biochemical-physiological mechanisms such as metabolic events increasing the radioresistance of the cells, providing excess energy for repair or favoring and partaking in the DNA repair synthesis were discussed. Further studies were felt necessary to elucidate this phenomenon.  相似文献   

12.
It is now possible to examine in detail exchanges between sister chromatids (SCEs) and to attempt to investigate the relationships of such exchanges to aberration formation and DNA-repair mechanisms. The frequency of SCEs is dramatically increased by chemical mutagens and may reflect the level of DNA damage. Lymphocytes from patients with ataxia telangiectasis (AT) show high levels of spontaneous chromosome damage and are hypersentive to ionising radiations and it was of interest to examine the levels of SCE induced in these cells by various mutagens. The frequencies of SCE after treatment with X=rays or three chemical mutagens were equivalent to those in normal cells. The effects of fluorodeoxyuridine and deoxycytidine on SCE frequencies were also tested.  相似文献   

13.
The effects of busulphan on the chromosomes of normal human lymphocytes   总被引:2,自引:0,他引:2  
In vitro exposure of human lymphocytes to busulphan (BUS) produced an increase in chromosome aberrations and in sister-chromatid exchange (SCE) frequency. The distribution of chromosome breaks throughout the karyotype was non-random and they occurred mainly in the G-negative bands. Certain bands had a marked susceptibility to BUS and comparisons with the human chromosome-break distributions reported for a number of drugs revealed that some of these bands were equally susceptible to other alkylating agents. Both the number of chromosome gaps and breaks and the SCE frequency increased with BUS concentration, but only the SCE dose--response was a clearly defined linear relationship. Therefore a standard SCE dose--response curve was constructed for future comparison with the results of similar investigations of patients on BUS therapy.  相似文献   

14.
In vitro exposure of human lymphocytes to busulphan (BUS) produced an increase in chromosome aberrations and in sister-chromatid exchange (SCE) frequency. The distribution of chromosome breaks throughout the karyotype was non-random and they occurred mainly in the G-negative bands. Certain bands had a marked susceptibility to BUS and comparisons with the human chromosome-break distributions reported for a number of drugs revealed that some of these bands were equally susceptible to other alkylating agents. Both the number of chromosome gaps and breaks and the SCE frequency increased with BUS concentration, but only the SCE dose-response was a clearly defined linear relationship. Therefore a standard SCE dose-response curve was constructed for future comparison with the results of similar investigations of patients on BUS therapy.  相似文献   

15.
We have studied the effects of 5-bromodeoxyuridine (BrdUrd) at two genetic loci in diploid human lymphoblast cells. In thymidine kinase heterozygotes (tk +/-), a 2-h dose of BrdUrd induced a transient, non-heritable resistance to the thymidine analogue, trifluorothymidine (F3TdR). We have called this phenomenon pseudomutation and have shown that affected cells acquire the ability to survive in the presence of F3TdR and then, after degradation of F3TdR in the medium, return to an apparently normal wild-type state. Our data suggest that BrdUrd incorporation into DNA as a thymidine analogue is responsible for the effect, which we interpret as a temporary loss of thymidine kinase activity. This effect is not seen in tk +/+ homozygotes. In contrast, at the hypoxanthine-guanine phosphoribosyl transferase locus in tk +/- heterozygotes, BrdUrd did not induce a permanent, heritable resistance to 6-thioguanine (gene locus mutation). We detected such mutations only in the tk +/+ homozygote and only at external BrdUrd concentrations considerably higher than those which saturate the uptake of BrdUrd into DNA as a thymidine analogue. We postulate that the reduced TK enzyme levels (30%) in the heterozygote prevent the build-up of a sufficiently high intracellular BrdUrd triphosphate pool to promote the misincorporations as deoxycytidine triphosphate which may be responsible for gene locus mutation.  相似文献   

16.
The effect of a tumor promoter, 12-O-tetradecanoyl-phorbol 13-acetate (TPA) alone and in combination with mitomycin C (MMC) or cyclophosphamide (CPP) on the induction of sister-chromatid exchanges (SCE) in Chinese hamster V79 cells was investigated. TPA alone at various doses and durations caused no increase of SCE frequency. MMC either at the dose of 0.03 or 0.003 μg/ml alone or in combination with TPA (2 μg/ml) all caused a significant increase of SCE frequencies. There was no difference in SCE frequencies between the cultures treated with MMC alone at 0.03 μg/ml and those treated with MMC plus TPA. However, cultures treated with MMC at 0.003 μg/ml plus TPA had significantly and consistently higher SCE frequencies than those treated with MMC alone at all durations. Treatment of CPP at 1 μg/ml activated by S9 mix caused significant increase of SCE frequencies. Surprisingly, the cultures treated with CPP, S9 mix plus TPA (2 μg/ml) caused a drastic reduction of SCE frequencies as compared to those treated with CPP and S9 mix only at all durations. These results indicate that TPA alone had no effect on SCE in V79 cells. TPA enhanced the SCE induction in V79 cells treated with MMC at a low dose, i.e. 0.003 μg/ml, but it inhibited SCE induction in cultures treated with the indirect mutagen CPP. Thus, TPA has no direct effect on genetic materials but it may indirectly alter the effects of a mutagen.  相似文献   

17.
Chinese hamster ovary cells were used to compare the cytotoxicity and mutagenicity of far-UV radiation emitted by a low-pressure mercury, germicidal lamp (wavelength predominantly 254 nm) with that of near-UV radiation emitted by a fluorescent lamp with a continuous spectrum (Westinghouse “Sun Lamp”), of which only the radiation with wavelengths greater than 290 nm or greater than 310 nm was transmitted to the cells. The radiation effects were compared on the basis of an equal number of pyrimidine dimers, the predominant lesion induced in DNA by far-UV, for the induction of which much more energy is needed with near-UV than with 254-nm radiation.The numbers of dimers induced were determined by a biochemical method detecting UV-endonuclease-susceptible sites. The equivalence of these sites with pyrimidine dimers was established, qualitatively and quantitatively, in studies with enzymic photoreactivation in vitro and chromatographic analysis of dimers.On the basis of induced dimers, more cells were killed by >310-nm UV than by >290-nm UV; both forms of radiation were more cytotoxic than 254-nm UV when equal numbers of dimers were induced. Moreover, 5–6 times as many mutants were induced per dimer by >310-nm UV than by >290-nm UV; the latter appeared approximately as mutagenic as 254-nm UV. The differences in lethality and mutagenicity were not caused by differences in repair of dimers: cells with an equal number of dimers induced by either 254-nm or near-UV showed the same removal of sites susceptible to a UV endonuclease specific for dimers, as well as an identical amount of repair replication.The results indicate that near-UV induces, besides pyrimidine dimers, other lesions that appear to be of high biological significance.  相似文献   

18.
Experiments have been performed to investigate whether BrdUrd- and CldUrd-substituted DNA contains lesions causing a delay in cell-cycle progression and induction of chromosomal aberrations. The presence of lesions has been determined directly by alkaline sucrose gradient and nucleoid sedimentation analysis and indirectly by screening for induced chromosomal aberrations. The influence of inhibitors of DNA repair (caffeine and 3-aminobenzamide) or DNA synthesis (hydroxyurea) on the frequencies of such aberrations has been estimated. It is found that BrdUrd and CldUrd are cytotoxic when present in DNA. No randomly located DNA breaks could be detected under neutral conditions, but BrdUrd-substituted DNA was found to contain numerous alkali-labile sites. CldUrd at high concentrations causes G2 delay, similar to the action of known DNA-damaging agents. The extent of delay depends on the pattern of incorporation of the analogue, i.e., incorporation for two cell cycles causes the longest delay, growth for 12 h in CldUrd followed by 12 h in dThd-containing medium causes a lesser delay and the delay is not significant when the cells are incubated in the analogue for only 12 h prior to fixation. Numerous chromatid type aberrations are present in cells incubated at the highest CldUrd concentration, and their induction follows the pattern of induction of G2 delay, indicating the sharing of a common lesion. Caffeine, 3-aminobenzamide and hydroxyurea increase the number of chromosomal aberrations when added 2 h before fixation. The significance of these results is discussed.  相似文献   

19.
Sister-chromatid exchange (SCE) induced by ultraviolet (UV) irradiation and viability after UV irradiation were studied in lymphoblastoid cell lines derived from 7 patients with xeroderma pigmentosum (XP) and 6 normal donors. UV irradiation caused significant increases of SCEs in both XP and normal cells. In 3 XP cell lines, which were deficient in unscheduled DNA synthesis (UDS) and sensitive to the killing effect of UV, very high SCE frequencies were observed after UV irradiation. Cells from a patient with the De Sanctis-Cacchione syndrome were the most sensitive to UV in terms of both SCE induction and cell killing. In 2 of 4 UDS-proficient XP cell lines tested, the incidences of UV-induced SCEs were similar to those in normal cell lines, but in 2 other UDS-proficient lines from 2 XP patients with skin cancer, the frequencies of UV-induced SCEs were significantly higher than in normal cells.Continuous post-UV treatment with 1 mM caffeine markedly enhanced UV-induced SCEs in 3 of 4 UDS-proficient XP cell lines but had only slight effects on cells from the 4th UDS-proficient XP patient and from normal individuals.  相似文献   

20.
B Kaina  O Aurich 《Mutation research》1985,149(3):451-461
Chinese hamster V79 cells were pulse-treated (for 60 min) with various mutagens three, two or one cell cycles before fixation (treatment variants A, B and C, respectively) and the frequencies of induced SCEs were analysed and compared. The degree of increase in frequency of SCEs with dose in the treatment variants depended on the mutagen used. For the methylating agents MNU, MNNG and DMPNU, high yields of SCEs were obtained in the treatment variants A and B, and there was no difference in the efficiency with which these agents induced SCEs in these treatment variants. In the treatment variant C, however, no SCEs were induced with mutagen doses yielding a linear increase in SCE frequency in treatment variants A and B. A slight increase in SCE frequency in treatment variant C was observed only when relatively high doses of MNU or MNNG were applied. Like the above agents, EMS, ENU and MMS induced more SCEs in treatment variants A and B than in C, but for these agents treatment variant B was most effective and SCEs were induced over the entire dose range, also in treatment variant C. As opposed to the methylating and ethylating agents, MMC induced SCEs with high efficiency when treatment occurred one or two generations prior to fixation. There was no difference in SCE frequency between these treatment variants. MMC was completely ineffective for the induction of SCEs when treatment occurred three generations before fixation. The unexpectedly low SCE frequencies induced by the methylating and ethylating agents when treatment occurred one generation before fixation were not due to the exposure of cells to BrdU prior to mutagen treatment. From the results obtained, it is concluded that DNA methylation and ethylation lesions give rise to SCEs only with very low probability during the replication cycle after the lesion's induction, and that subsequent lesions produced during or after replication of the methylated or ethylated template (secondary lesions) are of prime importance for SCE formation after alkylation. For MMC, however, primary lesions seem to be most important for SCE induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号