首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that insulin stimulates glycerolipid synthesis and phospholipid hydrolysis in BC3H-1 myocytes, resulting in the generation of membrane diacylglycerol, a known cellular mediator. This led us to the original proposal that diacylglycerol may contribute to the mediation of insulin action, especially stimulation of glucose transport. The fact that agents such as phenylephrine and phorbol esters, which increase or act as membrane diacylglycerols, are fully active in stimulating glucose transport in this tissue lent further support to this proposal. In this paper, we demonstrate that the diacylglycerol analogues PMA (4 beta-phorbol 12-myristate 13-acetate) and mezerein (both possessing 12 beta- and 13 alpha-O-linked substituents as well as a 4 beta-hydroxyl group) each increase the Vmax of the glucose transporter as does insulin. Diacylglycerol generated by the addition of phospholipase C also stimulates glucose uptake to a maximum which is equal and nonadditive to that of insulin, while addition of the narrowly active phosphatidylinositol-specific phospholipase C which generates the putative phosphoinositol-glycan mediator of Saltiel et al. (Saltiel, A., Fox, J., She Lin, P., and Cutrecasas, P. (1986) Science 233, 967-972) stimulates pyruvate dehydrogenase in these cells without any effect on glucose uptake. Pretreatment of the myocytes with PMA resulted in desensitization of subsequent glucose uptake to stimulation by phenylephrine, but had no effect on stimulation of glucose uptake by phospholipase C or by insulin, indicating that PMA pretreatment primarily desensitizes agonist-induced polyphosphoinositide hydrolysis which, as we have previously shown, is not involved in the insulin-induced generation of diacylglycerol. This was confirmed by the absence of intracellular Ca2+ mobilization during insulin administration, as measured by the sensitive fluorescent probe fura-2 in attached monolayer BC3H-1 myocytes. Furthermore, we have shown that insulin-generated diacylglycerol satisfies several criteria for a mediator of insulin action, including the demonstration that insulin-stimulated endogenous diacylglycerol generation is antecedent to glucose transport and has an identical insulin dose-response curve and moreover that the magnitude and time course of subsequent stimulation of glucose transport is reproduced by the addition of the simple exogenous diacylglyerol, dioctanoylglycerol, in the complete absence of the hormone. These results establish a central role for insulin-induced glycerolipid metabolism in mediating insulin-stimulated glucose transport in BC3H-1 myocytes.  相似文献   

2.
Our earlier observation that the chemical mediator of insulin action stimulates lipid synthesis in primary cultures of rat hepatocytes prompted us to examine its presence in human serum and its regulation by changes in insulin levels. Serum samples were obtained from normal subjects following an oral 100 gm glucose tolerance test (GTT; n = 10). An acid soluble, heat stable and charcoal non-absorbable substance was extracted from different sera and tested for their ability to stimulate liver mitochondrial pyruvate dehydrogenase (PDH). This substance obtained from GTT samples at 1/1000 final dilution caused significantly higher stimulation of PDH when compared to that obtained from fasting samples. These results demonstrate the presence of an activator of PDH (molecular weight approximately 1000-2000) in human circulation. Since the activator of PDH is modulated by physiological perturbation such as oral glucose ingestion, known to cause changes in circulating insulin levels, it may possibly be related to insulin mediator.  相似文献   

3.
Glycerol-3-phosphate acyltransferase (G3PAT) was activated by insulin in intact rat adipocytes within 1 min: this activation persisted for 10 min, and was due to a decrease in the Km of the enzyme. The addition of insulin to control adipocyte membranes also increased G3PAT activity, and this effect was mimicked by phosphatidylinositol-specific phospholipase C. Cytosol fractions from insulin-treated adipocytes stimulated G3PAT activity of control membranes, suggesting that a soluble mediator is released during insulin action, possibly through activation of a PI-specific PLC.  相似文献   

4.
The polar head group that was released by treating an insulin-sensitive glycophospholipid with a phosphatidylinositol-specific phospholipase C (PI-PLC) stimulated pyruvate dehydrogenase (PDH) in both subcellular and whole cell assays. Stimulation of PDH activity in the subcellular assay was detected after gel filtration chromatography of the polar head group. This stimulation was not due to the presence of contaminating calcium and magnesium. The PDH-stimulating activity was proportional to the amount of polar head group added to the assay. The effect of the polar head group on PDH in the subcellular assay was blocked by sodium fluoride, suggesting that the polar head group activated the PDH phosphatase. In the whole cell assay, the polar head group stimulated PDH activity to an equal or greater extent as a physiological concentration of insulin. The effect of the polar head group was detected at 5 min, peaked at 10 min, and declined thereafter. In contrast, insulin stimulated PDH activity more slowly, but consistently. The PDH-stimulating activity eluted after bacitracin but ahead of ATP during gel filtration chromatography, and it was destroyed by exposure to NH4OH or alkaline phosphatase and by boiling in water. These data support the proposal that an early step in insulin action is the release of insulinomimetic polar head group from the insulin-sensitive glycophospholipid.  相似文献   

5.
The influence of alterations in phospholipid structure by phospholipase treatment on insulin action and glucose transport in rat adipocytes was studied. It appeared that phospholipase A2 from bee venom caused a breakdown of approximately 50% of phosphotidylcholine without lysis of the cells. Because of this treatment, insulin binding was increased, resulting in an increased sensitivity of glucose transport towards lower insulin concentrations. Moreover, an increased affinity of the transport system for 2-deoxyglucose was observed. Phospholipase C from Clostridium welchii caused complete lysis of adipocytes. Phospholipase A2 from Crotalus adamenteus was without effect.  相似文献   

6.
Accumulating evidence indicates an important role for serine phosphorylation of IRS-1 in the regulation of insulin action. Recent studies suggest that Rho-kinase (ROK) is a mediator of insulin signaling, via interaction with IRS-1. Here we show that insulin stimulation of glucose transport is impaired when ROK is chemically or biologically inhibited in cultured adipocytes and myotubes and in isolated soleus muscle ex vivo. Inactivation of ROK also reduces insulin-stimulated IRS-1 tyrosine phosphorylation and PI3K activity. Moreover, inhibition of ROK activity in mice causes insulin resistance by reducing insulin-stimulated glucose uptake in skeletal muscle in vivo. Mass spectrometry analysis identifies IRS-1 Ser632/635 as substrates of ROK in vitro, and mutation of these sites inhibits insulin signaling. These results strongly suggest that ROK regulates insulin-stimulated glucose transport in vitro and in vivo. Thus, ROK is an important regulator of insulin signaling and glucose metabolism.  相似文献   

7.
An insulin-stimulating peptide derived from bovine serum albumin by digestion with trypsin was shown to inhibit insulin degradation. Addition of this peptide (1.2 microM) to the medium of isolated rat adipocytes markedly inhibited the degradation of insulin in the medium, but had a little effect on degradation of cell-associated insulin. Moreover, this peptide did not prevent dissociation of cell-associated insulin, suggesting that it is a bacitracin-type, not a chloroquine-type inhibitor of insulin degradation. The peptide also potentiated the stimulation by insulin mimickers of glucose oxidation by rat adipocytes, strongly indicating that it has some other effects besides inhibition of insulin degradation. Therefore, the effect of the peptide on activation of pyruvate dehydrogenase (PDH), one of the postbinding actions of insulin, was studied. Addition of the peptide (4 microM) to adipocytes was found to activate PDH in the absence or presence of insulin. This stimulatory effect of the peptide on PDH was dose-dependent and was observed in both whole cells and subcellular fractions of rat adipocytes. The peptide also stimulated PDH in a subcellular system of either plasma membranes and mitochondria or mitochondria only. Sodium fluoride, an inhibitor of phosphatase, blocked the action of the peptide almost completely, suggesting that the stimulatory effect of the peptide on PDH activity is at least partly due to its activation of PDH phosphatase. The mechanisms of action of the peptide are discussed. The peptide should be useful in studies on modulation of the action of insulin.  相似文献   

8.
The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing, impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change in muscle glucose transport as measured by uptake of 3-O-[14C]-methylglucose. Simultaneously, muscle glycogen stores increased to 2-3.5 times initial values, depending on fibre type. Perfusion for 5 h in the presence of glucose but in the absence of insulin decreased subsequent insulin action on glucose uptake by 80% of the effect of glucose with insulin, but without an increase in muscle glycogen concentration. Perfusion for 5 h with insulin but without glucose, and with subsequent addition of glucose back to the perfusate, revealed glucose uptake and transport similar to initial values obtained in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.  相似文献   

9.
We have studied the ability of occupied insulin receptors to activate (or couple to) the glucose transport system in isolated rat adipocytes. Maximal insulin action is seen when only a small proportion (<10%) of the receptors is occupied, and this fraction can be rapidly filled (<5 s) at an insulin concentration of 100 ng/ml. Additionally, control studies show that when the extracellular glucose concentration is tripled, the rate of transport triples within 10 s, indicating that changes in transport activity can be observed nearly instantaneously. Therefore, when cells are exposed to a high insulin concentration (100 ng/ml), any delay in the onset of insulin action beyond this time must be due to the time required for coupling of occupied insulin receptors to the glucose transport system. At 24 °C there is a lag of at least 200 s after insulin addition before a significant stimulation of 2-deoxyglucose transport is seen. The length of this lag phase is temperature dependent, decreasing to 45 s at 37 °C. An Arrhenius plot of the coupling lag is linear, with an activation energy of 25 kcal/mol. After the delay in the onset of initial transport activation the full response appears in a gradual manner, requiring 20 min at 24 °C to attain maximal stimulation. The time required for the full insulin response to appear is also temperature dependent, decreasing to 5 min at 37 °C. Similar results were obtained for the kinetics of insulin activation of 3-O-methyl glucose transport. Thus, the coupling of insulin receptors to the glucose transport system can be divided into two components: an initial absolute time lag followed by a gradual incremental process before the maximal, or full, effect of insulin is achieved. In conclusion, (1) there is an absolute delay in the onset of the insulin's initial action on glucose transport, (2) after an initial delay, activation of transport proceeds in a gradual manner, and (3) the coupling process between insulin receptors and the glucose transport system is temperature dependent and can be described by a linear Arrhenius plot. This suggests that the rate of activation is not limited by membrane fluidity.  相似文献   

10.
The effect of alterations to the insulin receptor on the insulin sensitivity of isolated adipocytes was studied. Receptor changes were induced by treatment of adipocytes with either phospholipase C or trypsin. After enzyme treatment, binding of insulin to insulin receptors and insulin-mediated glucose metabolism were examined. Exposure of adipocytes to phospholipase C (2 units/ml) significantly increased insulin binding to the cells, but destroyed the ability of the cells to oxidize glucose. After treatment with trypsin (500 micrograms/ml) for 5 min, insulin binding to the adipocytes was significantly increased. This was shown to be due to an increase in insulin-receptor affinity. Metabolic studies showed that trypsin treatment led to an increase in basal glucose transport but markedly decreased the response to insulin at all concentrations tested. Adipocytes treated with trypsin showed no significant difference in basal glucose oxidation rates when compared with controls, but were less sensitive to insulin at low insulin concentrations, and showed a decreased maximum response at high insulin concentrations. In conclusion, these findings indicate a dissociation between induced changes in binding of insulin to insulin receptors and subsequent hormone action. The importance of post-receptor events in the biological action of insulin is highlighted.  相似文献   

11.
We have investigated the topography of a glycosyl-phosphatidylinositol implicated in insulin action by a combination of two complementary methods: (a) chemical labelling with a non-permeable (isethionyl acetimidate) and a permeable (ethyl acetimidate) probe; and (b) enzymatic modifications with beta-galactosidase (EC 3.2.1.23) or phosphatidylinositol-specific phospholipase C (EC 3.1.4.3). Using the first approach the majority of the glycosyl-phosphatidylinositol is found in the outer surface of intact hepatocytes, adipocytes, fibroblasts and lymphocytes, but not in erythrocytes which presented only a 20% of the total labelled glycosyl-phosphatidylinositol to the exterior. Upon insulin addition (10 nM), about 60% of the total glycosyl-phosphatidylinositol was hydrolysed in both hepatocytes and adipocytes but not in erythrocytes. In agreement with the extracellular localization in hepatocytes and with the proposed role of this glycolipid in insulin action, treatment of rat hepatocytes with beta-galactosidase from Escherichia coli, an enzyme that hydrolyses the oligosaccharide moiety of the glycosyl-phosphatidylinositol, cleaved 65% of the total glycophospholipid and blocked the effect of insulin (but not of glucagon) on pyruvate kinase (EC 2.7.1.40). Similar treatment with phosphatidylinositol-specific phospholipase C from Bacillus cereus hydrolysed 62% of the total glycosyl-phosphatidylinositol. From the various approaches used it is concluded that the majority of this glycophospholipid is at the outer surface in a variety of insulin-sensitive cells.  相似文献   

12.
It is widely accepted that insulin action does not involve inositol phospholipid hydrolysis through the stimulation of a phosphatidylinositol-specific phospholipase C (PI-PLC). This consideration prompted us to investigate the insulin effect on the mechanism leading to the accumulation of diacylglycerol (DAG) and phosphatidic acid (PA) in rat hepatocytes. Basically, insulin induces: (i) a significant increase of both [3H]glycerol and fatty acid labelling of DAG; (ii) a significant increase of PA labelling preceding DAG labelling and paralleled by a decrease of phosphatidylcholine (PC) labelling. These observations, which suggest an insulin-dependent involvement of a phospholipase D, are strengthened by the increase of PC-derived phosphatidylethanol in presence of ethanol. Finally, the observation that the PA levels do not return to basal suggests that other mechanisms different from PC hydrolysis, such as the stimulation of direct synthesis of PA, may be activated.  相似文献   

13.
A two stage assay for detecting insulin mediator based upon its stimulation of soluble pyruvate dehydrogenase (PDH) phosphatase to activate soluble pyruvate dehydrogenase complex (PDC) has been developed. This coupled assay determines the activation of PDC by monitoring production of [14C]CO2 from [1-14C]pyruvic acid. In addition to being more sensitive than the rat liver mitoplast assay previously used, it allows for the separation and investigation of the effects of mediator on the PDH phosphatases individually. It has been previously shown that the insulin mediator stimulates the most abundant PDH phosphatase, the divalent cation dependent PDH phosphatase, by decreasing the phosphatase's metal requirement (1). A metal independent PDH phosphatase has been found in bovine heart mitochondria. This phosphatase is not immunoprecipitated by antiphosphatase 2A antibody, it is not inhibited by okadaic acid, and it is not stimulated by spermine. However, it is stimulated (more than threefold) by insulin mediator prepared from isolated rat liver membranes. It is inhibited by Mg-ATP, with half-maximal inhibition at 0.3 mM; however, this inhibition is overcome by the insulin mediator.  相似文献   

14.
Hampson LJ  Agius L 《FEBS letters》2007,581(21):3955-3960
Parasympathetic (cholinergic) innervation is implicated in the stimulation of hepatic glucose uptake by portal vein hyperglycaemia. We determined the direct effects of acetylcholine on hepatocytes. Acute exposure to acetylcholine mimicked insulin action on inactivation of phosphorylase, stimulation of glycogen synthesis and suppression of phosphoenolpyruvate carboxykinase mRNA levels but with lower efficacy and without synergy. Pre-exposure to acetylcholine had a permissive effect on insulin action similar to glucocorticoids and associated with increased glucokinase activity. It is concluded that acetylcholine has a permissive effect on insulin action but cannot fully account for the rapid stimulation of glucose uptake by the portal signal.  相似文献   

15.
《The Journal of cell biology》1994,126(5):1267-1276
Lipoprotein lipase (LPL) and glycolipid-anchored cAMP-binding ectoprotein (Gce1) are modified by glycosyl-phosphatidylinositol (GPI) in rat adipocytes, however, the linkage is potentially unstable. Incubation of the cells with either insulin (0.1-30 nM) or the sulfonylurea, glimepiride (0.5-20 microM), in the presence of glucose led to conversion of up to 35 and 20%, respectively, of the total amphiphilic LPL and Gce1 to their hydrophilic versions. Inositol- phosphate was retained in the residual protein-linked anchor structure. This suggests cleavage of the GPI anchors by an endogenous GPI-specific insulin- and glimepiride-inducible phospholipase (GPI-PL). Despite cleavage, hydrophilic LPL and Gce1 remained membrane associated and were released only if a competitor, e.g., inositol- (cyclic)monophosphate, had been added. Other constituents of the GPI anchor (glucosamine and mannose) were less efficient. This suggests peripheral interaction of lipolytically cleaved LPL and Gce1 with the adipocyte cell surface involving the terminal inositol- (cyclic)monophosphate epitope and presumably a receptor of the adipocyte plasma membrane. In rat adipocytes which were resistant toward glucose transport stimulation by insulin, the sensitivity and responsiveness of GPI-PL to stimulation by insulin was drastically reduced. In contrast, activation of both GPI-PL and glucose transport by the sulfonylurea, glimepiride, was not affected significantly. Inhibition of glucose transport or incubation of rat adipocytes in glucose-free medium completely abolished stimulation of GPI-PL by either insulin or glimepiride. The activation was partially restored by the addition of glucose or nonmetabolizable 2-deoxyglucose. These data suggest that increased glucose transport stimulates a GPI-PL in rat adipocytes.  相似文献   

16.
Exposure to phospholipase C increased the incorporation of [32P]Pi into phosphatidate, CMP-phosphatidate and phosphatidylinositol in rat adipose tissue and isolated adipocytes. A similar effect was observed in response to insulin and oxytocin. Theophylline, 3-isobutyl-1-methylxanthine and adenosine deaminase decreased [32P]Pi incorporation, and adenosine and N6-phenylisopropyladenosine reversed these effects. As with insulin, exposure of adipose tissue to phospholipase C stimulated oxidation of glucose, pyruvate and leucine and activated pyruvate dehydrogenase. Oxytocin and adenosine also mimicked the effects of insulin on leucine oxidation and pyruvate dehydrogenase. However, only insulin stimulated glycogen synthase activity, indicating that the regulation of synthase may be achieved by intracellular events distinct from those regulating changes in phospholipid metabolism, sugar transport and mitochondrial enzyme activities. It is postulated that exposure to phospholipase C forms diacylglycerol, which is phosphorylated to yield phosphatidate. The increased labelling of CMP-phosphatidate and phosphatidylinositol results from the conversion of phosphatidate into these lipids. The correlation between the effects of phospholipase C on phosphatidate synthesis and changes in adipose-tissue metabolism suggests the possibility that increased phosphatidate may directly or indirectly produce changes in membrane transport and enzyme activities. The pattern of phospholipid labelling produced by insulin, adenosine and oxytocin suggests that these stimuli may also increase phosphatidate synthesis, and, if so, changes in phospholipid metabolism could account for some of the metabolic actions of these stimuli.  相似文献   

17.
The abilities of insulin and the insulin mimickers spermine and H2O2 to stimulate 3-O-methyl glucose transport in isolated rat ft cells were stuided in an attempt to determine possible common mechanisms of action. All three agents caused a seven- to 12-fold stimulation of initial rates of glucose transport with insulin being the most effective agent. Insulin and spermine displayed similar time courses for the onset of their stimulation of transport; an initial lag before any effect was seen and then a gradual rise until the full effect was reached. The time course of H2O2 activation of glucose transport was different since stimulation was seen at the earliest time point tested and then gradually rose to the maximal effect. Trypsinization of cells removed insulin receptors and rendered the cells insensitive to insulin but not to spermine or H2O2. However, trypsinization did alter the time course of H2O2 action, causing an initial lag phase to appear and a general slowing of the activation kinetics. Pretreatment of cells with 2,4-dinitrophenol to lower ATP levels prevented the stimulatory effects of insulin and the mimickers. All three of the agents revealed a similar temperature dependency for stimulated glucose transport, resulting in linear Arrhenius plots with activation energies of 10.2–11.4 kcal/mole. These results show that (1) H2O2 does not act directly on the glucose transport system of rat adipocytes and (2) insulin and H2O most likely act through a common energy-dependent biochemical pathway to stimulate glucose transport, but H2O2 enters the stimulus-response sequence distal to the initial steps in insulin action.  相似文献   

18.
Insulin is known to increase the number of cell surface insulin-like growth factor II (IGF-II) receptors in isolated rat adipose cells through a subcellular redistribution mechanism similar to that for the glucose transporter. The effects of insulin on these two processes, therefore, have now been directly compared in the same cell preparations. 1) Insulin increases the steady state number of cell surface IGF-II receptors by 7-13-fold without affecting receptor affinity; however, insulin stimulates glucose transport activity by 25-40-fold. 2) The insulin concentration required for half-maximal stimulation of cell surface IGF-II receptor number is approximately 30% lower than that for the stimulation of glucose transport activity. 3) The half-time for the achievement of insulin's maximal effect at 37 degrees C is much shorter for IGF-II receptor number (approximately 0.8 min) than for glucose transport activity (approximately 2.6 min). 4) Reversal of insulin's action at 37 degrees C occurs more rapidly for cell surface IGF-II receptors (t1/2 congruent to 2.9 min) than for glucose transport activity (t1/2 congruent to 4.9 min). 5) When the relative subcellular distribution of IGF-II receptors is examined in basal cells, less than 10% of the receptors are localized to the plasma membrane fraction indicating that most of the receptors, like glucose transporters, are localized to an intracellular compartment. However, in response to insulin, the number of plasma membrane IGF-II receptors increases only approximately 1.4-fold while the number of glucose transporters increases approximately 4.5-fold. Thus, while the stimulatory actions of insulin on cell surface IGF-II receptors and glucose transport activity are qualitatively similar, marked quantitative differences suggest that the subcellular cycling of these two integral membrane proteins occurs by distinct processes.  相似文献   

19.
A severe resistance to the stimulatory action of insulin on glucose metabolism has been shown in ruminant adipose tissue or isolated adipocytes as compared to that of rats. To elucidate the mechanism of insulin resistance in ruminants, we measured the stimulatory effect of insulin on 3-O-methylgulose transport and on intracellular glucose metabolism in isolated adipocytes from sheep and rats. At a glucose concentration (0.1 mM) where transport is thought to be rate-limiting for metabolism, lipogenesis from [U-14C]glucose by ovine adipocytes was markedly less than by rat adipocytes in both the basal state and at all insulin concentrations. The responsiveness to insulin assessed by percent increase above basal was reduced to about 15% of that in rat adipocytes, but the insulin sensitivity was similar, because the insulin concentration giving half-maximal stimulation, ED50, did not differ significantly between ovine and rat adipocytes. The maximal insulin-stimulated 3-O-methylglucose transport in ovine adipocytes per cell was less than 20% of that in rat adipocytes, with a significant lowering in basal rates of transport. However, when data was expressed per 3-O-methylglucose equilibrium space no significant differences were found between ovine and rat in the basal transport rates, but a lowered ability of insulin to stimulate glucose transport was still seen in ovine adipocytes. The dose-response curve for glucose transport was slightly shifted to the right in ovine adipocytes compared to rat adipocytes, indicating a small decrease in insulin sensitivity. The decrease in glucose transport was due to 60% reduction in the maximum velocity in the insulin--stimulated state, with no change in the Km.  相似文献   

20.
The L6 skeletal muscle cell line has been identified as a suitable model to study the action of insulin on glucose uptake in muscle [Klip, Li & Logan (1984) Am. J. Physiol. 247, E291-E296]. The signals that transfer information from occupied insulin receptors to glucose transporters remain unknown. Here we report that activation of protein kinase C by exogenous phorbol esters results in stimulation of glucose uptake. Protein C kinase activity was induced to migrate from the cytosolic fraction to the microsomal fraction after 40 min of exposure of intact cells to 4 beta-phorbol 12,13-dibutyrate. In contrast, incubation with insulin did not alter the subcellular distribution of the kinase. Prolonged preincubation of L6 cells with phorbol esters resulted in depletion of kinase C activity, whereas neither the basal rate of glucose uptake nor its stimulation by insulin were affected. This suggests that protein kinase C is expressed in L6 cells, and that insulin stimulation of hexose transport does not involve protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号