首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K(ATP) channels are comprised of a pore-forming protein, Kir6.x, and the sulfonylurea receptor, SURx. Interaction of adenine nucleotides with Kir6.2 positively charged amino acids such as K185 and R201 on the C-terminus causes channel closure. Substitution of these amino acids with other positively charged residues had small effects on inhibition by adenine nucleotide, while substitution with neutral or negative residues had major effects, suggesting electrostatic interactions between Kir6.2 positive charges and adenine nucleotide negative phosphate groups. Furthermore, R201 mutation decreased channel sensitivity to ATP, ADP, and AMP to a similar extent, but K185 mutation decreased primarily ATP and ADP sensitivity, leaving the AMP sensitivity relatively unaffected. Thus, channel inhibition by ATP may involve interaction of the alpha-phosphate with R201 and interaction of the beta-phosphate with K185. In addition, decreased open probability due to rundown or sulfonylureas caused an increase in ATP sensitivity in the K185 mutant, but not in the R201 mutant. Thus, the beta-phosphate may bind in a state-independent fashion to K185 to destabilize channel openings, while R201 interacts with the alpha-phosphate to stabilize a channel closed configuration. Substitution of R192 on the C-terminus and R50 on the N-terminus with different charged residues also affected ATP sensitivity. Based on these results a structural scheme is proposed, which includes features of other recently published models.  相似文献   

2.
We have previously reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolites of arachidonic acid, are potent stereospecific activators of the cardiac K(ATP) channel. The epoxide group in EET is critical for reducing channel sensitivity to ATP, thereby activating the channel. This study is to identify the molecular sites on the K(ATP) channels for EET-mediated activation. We investigated the effects of EETs on Kir6.2delta C26 with or without the coexpression of SUR2A and on Kir6.2 mutants of positively charged residues known to affect channel activity coexpressed with SUR2A in HEK293 cells. The ATP IC50 values were significantly increased in Kir6.2 R27A, R50A, K185A, and R201A but not in R16A, K47A, R54A, K67A, R192A, R195A, K207A, K222A, and R314A mutants. Similar to native cardiac K(ATP) channel, 5 microM 11,12-EET increased the ATP IC50 by 9.6-fold in Kir6.2/SUR2A wild type and 8.4-fold in Kir6.2delta C26. 8,9- and 14,15-EET regioisomers activated the Kir6.2 channel as potently as 11,12-EET. 8,9- and 11,12-EET failed to change the ATP sensitivity of Kir6.2 K185A, R195A, and R201A, whereas their effects were intact in the other mutants. 14,15-EET had a similar effect with K185A and R201A mutants, but instead of R195A, it failed to activate Kir6.2R192A. These results indicate that activation of Kir6.2 by EETs does not require the SUR2A subunit, and the region in the Kir6.2 C terminus from Lys-185 to Arg-201 plays a critical role in EET-mediated Kir6.2 channel activation. Based on computer modeling of the Kir6.2 structure, we infer that the EET-Kir6.2 interaction may allosterically change the ATP binding site on Kir6.2, reducing the channel sensitivity to ATP.  相似文献   

3.
ATP-sensitive potassium (KATP) channels couple cell metabolism to electrical activity by regulating K+ flux across the plasma membrane. Channel closure is mediated by ATP, which binds to the pore-forming subunit (Kir6.2). Here we use homology modelling and ligand docking to construct a model of the Kir6.2 tetramer and identify the ATP-binding site. The model is consistent with a large amount of functional data and was further tested by mutagenesis. Ligand binding occurs at the interface between two subunits. The phosphate tail of ATP interacts with R201 and K185 in the C-terminus of one subunit, and with R50 in the N-terminus of another; the N6 atom of the adenine ring interacts with E179 and R301 in the same subunit. Mutation of residues lining the binding pocket reduced ATP-dependent channel inhibition. The model also suggests that interactions between the C-terminus of one subunit and the 'slide helix' of the adjacent subunit may be involved in ATP-dependent gating. Consistent with a role in gating, mutations in the slide helix bias the intrinsic channel conformation towards the open state.  相似文献   

4.
Molecular determinants of KATP channel inhibition by ATP.   总被引:7,自引:0,他引:7       下载免费PDF全文
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.  相似文献   

5.
K(ATP) channels, comprised of the pore-forming protein Kir6.x and the sulfonylurea receptor SURx, are regulated in an interdependent manner by adenine nucleotides, PIP2, and sulfonylureas. To gain insight into these interactions, we investigated the effects of mutating positively charged residues in Kir6.2, previously implicated in the response to PIP2, on channel regulation by adenine nucleotides and the sulfonylurea glyburide. Our data show that the Kir6.2 "PIP2-insensitive" mutants R176C and R177C are not reactivated by MgADP after ATP-induced inhibition and are also insensitive to glyburide. These results suggest that R176 and R177 are required for functional coupling to SUR1, which confers MgADP and sulfonylurea sensitivity to the K(ATP) channel. In contrast, the R301C and R314C mutants, which are also "PIP2-insensitive," remained sensitive to stimulation by MgADP in the absence of ATP and were inhibited by glyburide. Based on these findings, as well as previous data, we propose a model of the K(ATP) channel whereby in the presence of ATP, the R176 and R177 residues on Kir6.2 form a specific site that interacts with NBF1 bound to ATP on SUR1, promoting channel opening by counteracting the inhibition by ATP. This interaction is facilitated by binding of MgADP to NBF2 and blocked by binding of sulfonylureas to SUR1. In the absence of ATP, since K(ATP) channels are not blocked by ATP, they do not require the counteracting effect of NBF1 interacting with R176 and R177 to open. Nevertheless, channels in this state remain activated by MgADP. This effect may be explained by a direct stimulatory interaction of NBF2/MgADP moiety with another region of Kir6.2 (perhaps the NH2 terminus), or by NBF2/MgADP still promoting a weak interaction between NBF1 and Kir6.2 in the absence of ATP. The region delimited by R301 and R314 is not involved in the interaction with NBF1 or NBF2, but confers additional PIP2 sensitivity.  相似文献   

6.
Epoxyeicosatrienoic acids (EETs), the cytochrome P450 metabolites of arachidonic acid (AA), are potent and stereospecific activators of cardiac ATP-sensitive K(+)(K(ATP)) channels. EETs activate K(ATP) channels by reducing channel sensitivity to ATP. In this study, we determined the direct effects of EETs on the binding of ATP to K(ATP) channel protein. A fluorescent ATP analog, 2,4,6-trinitrophenyl (TNP)-ATP, which increases its fluorescence emission significantly upon binding with proteins, was used for binding studies with glutathione-S-transferase (GST) Kir6.2 fusion proteins. TNP-ATP bound to GST fusion protein containing the C-terminus of Kir6.2 (GST-Kir6.2C), but not to the N-terminus of Kir6.2, or to GST alone. 11,12-EET (5 muM) did not change TNP-ATP binding K(D) to GST-Kir6.2C, but B(max) was reduced by half. The effect of 11,12-EET was dose-dependent, and 8,9- and 14,15-EETs were as effective as 11,12-EET in inhibiting TNP-ATP binding to GST-Kir6.2C. AA and 11,12-dihydroxyeicosatrienoic acid (11,12-DHET), the parent compound and metabolite of 11,12-EET, respectively, were not effective inhibitors of TNP-ATP binding to GST-Kir6.2C, whereas the methyl ester of 11,12-EET was. These findings suggest that the epoxide group in EETs is important for modulation of ATP binding to Kir6.2. We conclude that EETs bind to the C-terminus of K(ATP) channels, inhibiting binding of ATP to the channel.  相似文献   

7.
ATP-sensitive potassium (K(ATP)) channels couple cell metabolism to electrical activity by regulating K(+) fluxes across the plasma membrane. Channel closure is facilitated by ATP, which binds to the pore-forming subunit (Kir6.2). Conversely, channel opening is potentiated by phosphoinositol bisphosphate (PIP(2)), which binds to Kir6.2 and reduces channel inhibition by ATP. Here, we use homology modelling and ligand docking to identify the PIP(2)-binding site on Kir6.2. The model is consistent with a large amount of functional data and was further tested by mutagenesis. The fatty acyl tails of PIP(2) lie within the membrane and the head group extends downwards to interact with residues in the N terminus (K39, N41, R54), transmembrane domains (K67) and C terminus (R176, R177, E179, R301) of Kir6.2. Our model suggests how PIP(2) increases channel opening and decreases ATP binding and channel inhibition. It is likely to be applicable to the PIP(2)-binding site of other Kir channels, as the residues identified are conserved and influence PIP(2) sensitivity in other Kir channel family members.  相似文献   

8.
Inward rectifier (Kir) potassium channels are characterized by two transmembrane helices per subunit, plus an intracellular C-terminal domain that controls channel gating in response to changes in concentration of various ligands. Based on the crystal structure of the tetrameric C-terminal domain of Kir3.1, it is possible to build a homology model of the ATP-binding C-terminal domain of Kir6.2. Molecular dynamics simulations have been used to probe the dynamics of Kir C-terminal domains and to explore the relationship between their dynamics and possible mechanisms of channel gating. Multiple simulations, each of 10 ns duration, have been performed for Kir3.1 (crystal structure) and Kir6.2 (homology model), in both their monomeric and tetrameric forms. The Kir6.2 simulations were performed with and without bound ATP. The results of the simulations reveal comparable conformational stability for the crystal structure and the homology model. There is some decrease in conformational flexibility when comparing the monomers with the tetramers, corresponding mainly to the subunit interfaces in the tetramer. The beta-phosphate of ATP interacts with the side chain of K185 in the Kir6.2 model and simulations. The flexibility of the Kir6.2 tetramer is not changed greatly by the presence of bound ATP, other than in two loop regions. Principal components analysis of the simulated dynamics suggests loss of symmetry in both the Kir3.1 and Kir6.2 tetramers, consistent with "dimer-of-dimers" motion of subunits in C-terminal domains of the corresponding Kir channels. This is suggestive of a gating model in which a transition between exact tetrameric symmetry and dimer-of-dimers symmetry is associated with a change in transmembrane helix packing coupled to gating of the channel. Dimer-of-dimers motion of the C-terminal domain tetramer is also supported by coarse-grained (anisotropic network model) calculations. It is of interest that loss of exact rotational symmetry has also been suggested to play a role in gating in the bacterial Kir homolog, KirBac1.1, and in the nicotinic acetylcholine receptor channel.  相似文献   

9.
Functional integrity of pancreatic adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels depends on the interactions between the pore-forming potassium channel subunit Kir6.2 and the regulatory subunit sulfonylurea receptor 1 (SUR1). Previous studies have shown that the N-terminal transmembrane domain of SUR1 (TMD0) interacts with Kir6.2 and is sufficient to confer high intrinsic open probability (P(o)) and bursting patterns of activity observed in full-length K(ATP) channels. However, the nature of TMD0-Kir6.2 interactions that underlie gating modulation is not well understood. Using two previously described disease-causing mutations in TMD0 (R74W and E128K), we performed amino acid substitutions to study the structural roles of these residues in K(ATP) channel function in the context of full-length SUR1 as well as TMD0. Our results revealed that although R74W and E128K in full-length SUR1 both decrease surface channel expression and reduce channel sensitivity to ATP inhibition, they arrive there via distinct mechanisms. Mutation of R74 uniformly reduced TMD0 protein levels, suggesting that R74 is necessary for stability of TMD0. In contrast, E128 mutations retained TMD0 protein levels but reduced functional coupling between TMD0 and Kir6.2 in mini-K(ATP) channels formed by TMD0 and Kir6.2. Importantly, E128K full-length channels, despite having a greatly reduced P(o), exhibit little response to phosphatidylinositol 4,5-bisphosphate (PIP(2)) stimulation. This is reminiscent of Kir6.2 channel behavior in the absence of SUR1 and suggests that TMD0 controls Kir6.2 gating by modulating Kir6.2 interactions with PIP(2). Further supporting this notion, the E128W mutation in full-length channels resulted in channel inactivation that was prevented or reversed by exogenous PIP(2). These results identify a critical determinant in TMD0 that controls Kir6.2 gating by controlling channel sensitivity to PIP(2). Moreover, they uncover a novel mechanism of K(ATP) channel inactivation involving aberrant functional coupling between SUR1 and Kir6.2.  相似文献   

10.
ATP-sensitive K+ (K(ATP)) channels are known to be gated by several intracellular molecules, but the gating mechanisms remain unclear. To understand the relationship of channel gating to ligand binding, we studied Kir6.2 channel gating by ATP and protons, which inhibit and activate the channel, respectively. We have previously shown that a threonine residue (Thr71) is critical for the pH sensitivity of Kir6.2 channel. If this site is involved in channel gating rather than ligand binding, it should affect channel gating by both ATP and proton. To test this hypothesis we performed a mutation analysis. Site-specific mutations of Thr71 to a bulky residue reduced the ATP sensitivity by >100-fold and eliminated the pH sensitivity. Single-channel activity of these mutants was stabilized at the open state with no detectable rundown. Mutations to a small amino acid had little effect on the ATP and pH sensitivities. Mutations to intermediate amino acids reduced but did not abolish the ATP and pH sensitivities. Hydrophobicity is not critical, as both polar and nonpolar amino acids are found in each group. Mutation to a positively charged lysine markedly exacerbated the pH- but not ATP-sensitivity, whereas mutation to glutamate moderately reduced ATP and pH sensitivities. These results indicate that the residue mass is critical for Kir6.2 channel gating, a mass that should be below 120 daltons with no charge. The existence of such a site as Thr71 involved in channel gating by both ATP and proton suggests that channel gating in the K(ATP) channel likely is separate from ligand binding.  相似文献   

11.
ATP-sensitive potassium (K(ATP)) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP(2)). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP(2), SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP(2) sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP(2) gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

12.
ATP-dependent K(+) channels (K(ATP) channels) are composed of pore-forming subunits Kir6.x and sulfonylurea receptors (SURs). Cyanoguanidines such as pinacidil and P1075 bind to SUR and enhance MgATP binding to and hydrolysis by SUR, thereby opening K(ATP) channels. In the vasculature, openers of K(ATP) channels produce vasorelaxation. Some novel cyanoguanidines, however, selectively reverse opener-induced vasorelaxation, suggesting that they might be K(ATP) channel blockers. Here we have analyzed the interaction of the enantiomers of a racemic cyanoguanidine blocker, PNU-94750, with Kir6.2/SUR channels. In patch clamp experiments, the R-enantiomer (PNU-96293) inhibited Kir6.2/SUR2 channels (IC(50) approximately 50 nm in the whole cell configuration), whereas the S-enantiomer (PNU-96179) was a weak opener. Radioligand binding studies showed that the R-enantiomer was more potent and that it was negatively allosterically coupled to MgATP binding, whereas the S-enantiomer was weaker and positively coupled. Binding experiments also suggested that both enantiomers bound to the P1075 site of SUR. This is the first report to show that the enantiomers of a K(ATP) channel modulator affect channel activity and coupling to MgATP binding in opposite directions and that these opposite effects are apparently mediated by binding to the same (opener) site of SUR.  相似文献   

13.
ATP-sensitive potassium (K(ATP)) channels conduct potassium ions across cell membranes and thereby couple cellular energy metabolism to membrane electrical activity. Here, we report the heterologous expression and purification of a functionally active K(ATP) channel complex composed of pore-forming Kir6.2 and regulatory SUR1 subunits, and determination of its structure at 18 A resolution by single-particle electron microscopy. The purified channel shows ATP-ase activity similar to that of ATP-binding cassette proteins related to SUR1, and supports Rb(+) fluxes when reconstituted into liposomes. It has a compact structure, with four SUR1 subunits embracing a central Kir6.2 tetramer in both transmembrane and cytosolic domains. A cleft between adjacent SUR1s provides a route by which ATP may access its binding site on Kir6.2. The nucleotide-binding domains of adjacent SUR1 appear to interact, and form a large docking platform for cytosolic proteins. The structure, in combination with molecular modelling, suggests how SUR1 interacts with Kir6.2.  相似文献   

14.
ATP-sensitive potassium (K(ATP)) channels are composed of an ATP-binding cassette (ABC) protein (SUR1, SUR2A or SUR2B) and an inwardly rectifying K(+) channel (Kir6.1 or Kir6.2). Like other ABC proteins, the nucleotide binding domains (NBDs) of SUR contain a highly conserved "signature sequence" (the linker, LSGGQ) whose function is unclear. Mutation of the conserved serine to arginine in the linker of NBD1 (S1R) or NBD2 (S2R) did not alter the ability of ATP or ADP (100 microM) to displace 8-azido-[(32)P]ATP binding to SUR1, or abolish ATP hydrolysis at NBD2. We co-expressed Kir6.2 with wild-type or mutant SUR in Xenopus oocytes and recorded the resulting currents in inside-out macropatches. The S1R mutation in SUR1, SUR2A or SUR2B reduced K(ATP) current activation by 100 microM MgADP, whereas the S2R mutation in SUR1 or SUR2B (but not SUR2A) abolished MgADP activation completely. The linker mutations also reduced (S1R) or abolished (S2R) MgATP-dependent activation of Kir6.2-R50G co-expressed with SUR1 or SUR2B. These results suggest that the linker serines are not required for nucleotide binding but may be involved in transducing nucleotide binding into channel activation.  相似文献   

15.
The ATP-sensitive potassium (K(ATP)) channel plays a key role in controlling beta-cell membrane potential and insulin secretion. The channels are composed of two subunits, Kir6.2, which forms the channel pore, and SUR1, which contains binding sites for nucleotides and sulphonylureas and acts as a channel regulator. Our current studies are aimed at delineating the molecular interactions involved in assembly and ligand binding by K(ATP) channel proteins. We have employed a complementation approach in which SUR1 half-molecules are co-expressed in insect cells using a baculovirus system. Together with data from truncated SUR1 molecules and a fusion protein in which SUR1 is linked to Kir6.2, we have interpreted our findings in terms of a model for the structure of the K(ATP) channel. The main features of the model are: (i) the C-terminal end of SUR1 is close to the N-terminus of Kir6.2; (ii) the two nucleotide binding domains (NBDs) of SUR1--NBD1 and NBD2--are in proximity; (iii) transmembrane helix 12 of SUR1 is orientated in such a way that it can make contact with Kir6.2; (iv) formation of the glibenclamide binding site requires that the two cytosolic loops (CLs) CL3 and CL8 are located close to each other; (v) there are homomeric interactions between the NBD1 domains of neighbouring subunits. We suggest that binding of glibenclamide leads to conformational changes in CL3 and CL8 leading to rearrangement of transmembrane helices. These effects are transmitted to Kir6.2 to result in channel closure.  相似文献   

16.
Anionic phospholipids modulate the activity of inwardly rectifying potassium channels (Fan, Z., and J.C. Makielski. 1997. J. Biol. Chem. 272:5388-5395). The effect of phosphoinositides on adenosine triphosphate (ATP) inhibition of ATP-sensitive potassium channel (K(ATP)) currents was investigated using the inside-out patch clamp technique in cardiac myocytes and in COS-1 cells in which the cardiac isoform of the sulfonylurea receptor, SUR2, was coexpressed with the inwardly rectifying channel Kir6.2. Phosphoinositides (1 mg/ml) increased the open probability of K(ATP) in low [ATP] (1 microM) within 30 s. Phosphoinositides desensitized ATP inhibition with a longer onset period (>3 min), activating channels inhibited by ATP (1 mM). Phosphoinositides treatment for 10 min shifted the half-inhibitory [ATP] (K(i)) from 35 microM to 16 mM. At the single-channel level, increased [ATP] caused a shorter mean open time and a longer mean closed time. Phosphoinositides prolonged the mean open time, shortened the mean closed time, and weakened the [ATP] dependence of these parameters resulting in a higher open probability at any given [ATP]. The apparent rate constants for ATP binding were estimated to be 0.8 and 0.02 mM(-1) ms(-1) before and after 5-min treatment with phosphoinositides, which corresponds to a K(i) of 35 microM and 5.8 mM, respectively. Phosphoinositides failed to desensitize adenosine inhibition of K(ATP). In the presence of SUR2, phosphoinositides attenuated MgATP antagonism of ATP inhibition. Kir6.2DeltaC35, a truncated Kir6.2 that functions without SUR2, also exhibited phosphoinositide desensitization of ATP inhibition. These data suggest that (a) phosphoinositides strongly compete with ATP at a binding site residing on Kir6.2; (b) electrostatic interaction is a characteristic property of this competition; and (c) in conjunction with SUR2, phosphoinositides render additional, complex effects on ATP inhibition. We propose a model of the ATP binding site involving positively charged residues on the COOH-terminus of Kir6.2, with which phosphoinositides interact to desensitize ATP inhibition.  相似文献   

17.
ATP-sensitive potassium (KATP) channels are inhibited by ATP and activated by phosphatidylinositol 4,5-bisphosphate (PIP2). Both channel subunits Kir6.2 and sulfonylurea receptor 1 (SUR1) contribute to gating: while Kir6.2 interacts with ATP and PIP2, SUR1 enhances sensitivity to both ligands. Recently, we showed that a mutation, E128K, in the N-terminal transmembrane domain of SUR1 disrupts functional coupling between SUR1 and Kir6.2, leading to reduced ATP and PIP2 sensitivities resembling channels formed by Kir6.2 alone. We show here that when E128K SUR1 was co-expressed with Kir6.2 mutants known to disrupt PIP2 gating, the resulting channels were surprisingly stimulated rather than inhibited by ATP. To explain this paradoxical gating behavior, we propose a model in which the open state of doubly mutant channels is highly unstable; ATP binding induces a conformational change in ATP-unbound closed channels that is conducive to brief opening when ATP unbinds, giving rise to the appearance of ATP-induced stimulation.  相似文献   

18.
Approximately half of the NH(2) terminus of inward rectifier (Kir) channels can be deleted without significant change in channel function, but activity is lost when more than approximately 30 conserved residues before the first membrane spanning domain (M1) are removed. Systematic replacement of the positive charges in the NH(2) terminus of Kir6.2 with alanine reveals several residues that affect channel function when neutralized. Certain mutations (R4A, R5A, R16A, R27A, R39A, K47A, R50A, R54A, K67A) change open probability, whereas an overlapping set of mutants (R16A, R27A, K39A, K47A, R50A, R54A, K67A) change ATP sensitivity. Further analysis of the latter set differentiates mutations that alter ATP sensitivity as a consequence of altered open state stability (R16A, K39A, K67A) from those that may affect ATP binding directly (K47A, R50A, R54A). The data help to define the structural determinants of Kir channel function, and suggest possible structural motifs within the NH(2) terminus, as well as the relationship of the NH(2) terminus with the extended cytoplasmic COOH terminus of the channel.  相似文献   

19.
20.
The inwardly rectifying potassium channel Kir6.2 is the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, which controls insulin secretion by coupling glucose metabolism to membrane potential in beta-cells. Loss of channel function because of mutations in Kir6.2 or its associated regulatory subunit, sulfonylurea receptor 1, causes congenital hyperinsulinism (CHI), a neonatal disease characterized by persistent insulin secretion despite severe hypoglycemia. Here, we report a novel K(ATP) channel gating defect caused by CHI-associated Kir6.2 mutations at arginine 301 (to cysteine, glycine, histidine, or proline). These mutations in addition to reducing channel expression at the cell surface also cause rapid, spontaneous current decay, a gating defect we refer to as inactivation. Based on the crystal structures of Kir3.1 and KirBac1.1, Arg-301 interacts with several residues in the neighboring Kir6.2 subunit. Mutation of a subset of these residues also induces channel inactivation, suggesting that the disease mutations may cause inactivation by disrupting subunit-subunit interactions. To evaluate the effect of channel inactivation on beta-cell function, we expressed an alternative inactivation mutant R301A, which has equivalent surface expression efficiency as wild type channels, in the insulin-secreting cell line INS-1. Mutant expression resulted in more depolarized membrane potential and elevated insulin secretion at basal glucose concentration (3 mm) compared with cells expressing wild type channels, demonstrating that the inactivation gating defect itself is sufficient to cause loss of channel function and hyperinsulinism. Our studies suggest the importance of Kir6.2 subunit-subunit interactions in K(ATP) channel gating and function and reveal a novel gating defect underlying CHI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号