首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Several pattern discovery methods have been proposed to detect over-represented motifs in upstream sequences of co-regulated genes, and are for example used to predict cis-acting elements from clusters of co-expressed genes. The clusters to be analyzed are often noisy, containing a mixture of co-regulated and non-co-regulated genes. We propose a method to discriminate co-regulated from non-co-regulated genes on the basis of counts of pattern occurrences in their non-coding sequences. METHODS: String-based pattern discovery is combined with discriminant analysis to classify genes on the basis of putative regulatory motifs. RESULTS: The approach is evaluated by comparing the significance of patterns detected in annotated regulons (positive control), random gene selections (negative control) and high-throughput regulons (noisy data) from the yeast Saccharomyces cerevisiae. The classification is evaluated on the annotated regulons, and the robustness and rejection power is assessed with mixtures of co-regulated and random genes.  相似文献   

2.
We developed an algorithm, Lever, that systematically maps metazoan DNA regulatory motifs or motif combinations to sets of genes. Lever assesses whether the motifs are enriched in cis-regulatory modules (CRMs), predicted by our PhylCRM algorithm, in the noncoding sequences surrounding the genes. Lever analysis allows unbiased inference of functional annotations to regulatory motifs and candidate CRMs. We used human myogenic differentiation as a model system to statistically assess greater than 25,000 pairings of gene sets and motifs or motif combinations. We assigned functional annotations to candidate regulatory motifs predicted previously and identified gene sets that are likely to be co-regulated via shared regulatory motifs. Lever allows moving beyond the identification of putative regulatory motifs in mammalian genomes, toward understanding their biological roles. This approach is general and can be applied readily to any cell type, gene expression pattern or organism of interest.  相似文献   

3.
4.
Subtle motifs: defining the limits of motif finding algorithms   总被引:4,自引:0,他引:4  
MOTIVATION: What constitutes a subtle motif? Intuitively, it is a motif that is almost indistinguishable, in the statistical sense, from random motifs. This question has important practical consequences: consider, for example, a biologist that is generating a sample of upstream regulatory sequences with the goal of finding a regulatory pattern that is shared by these sequences. If the sequences are too short then one risks losing some of the regulatory patterns that are located further upstream. Conversely, if the sequences are too long, the motif becomes too subtle and one is then likely to encounter random motifs which are at least as significant statistically as the regulatory pattern itself. In practical terms one would like to recognize the sequence length threshold, or the twilight zone, beyond which the motifs are in some sense too subtle. RESULTS: The paper defines the motif twilight zone where every motif finding algorithm would be exposed to random motifs which are as significant as the one which is sought. We also propose an objective tool for evaluating the performance of subtle motif finding algorithms. Finally we apply these tools to evaluate the success of our MULTIPROFILER algorithm to detect subtle motifs.  相似文献   

5.
In Kellis et al. (2003), we reported the genome sequences of S. paradoxus, S. mikatae, and S. bayanus and compared these three yeast species to their close relative, S. cerevisiae. Genomewide comparative analysis allowed the identification of functionally important sequences, both coding and noncoding. In this companion paper we describe the mathematical and algorithmic results underpinning the analysis of these genomes. (1) We present methods for the automatic determination of genome correspondence. The algorithms enabled the automatic identification of orthologs for more than 90% of genes and intergenic regions across the four species despite the large number of duplicated genes in the yeast genome. The remaining ambiguities in the gene correspondence revealed recent gene family expansions in regions of rapid genomic change. (2) We present methods for the identification of protein-coding genes based on their patterns of nucleotide conservation across related species. We observed the pressure to conserve the reading frame of functional proteins and developed a test for gene identification with high sensitivity and specificity. We used this test to revisit the genome of S. cerevisiae, reducing the overall gene count by 500 genes (10% of previously annotated genes) and refining the gene structure of hundreds of genes. (3) We present novel methods for the systematic de novo identification of regulatory motifs. The methods do not rely on previous knowledge of gene function and in that way differ from the current literature on computational motif discovery. Based on genomewide conservation patterns of known motifs, we developed three conservation criteria that we used to discover novel motifs. We used an enumeration approach to select strongly conserved motif cores, which we extended and collapsed into a small number of candidate regulatory motifs. These include most previously known regulatory motifs as well as several noteworthy novel motifs. The majority of discovered motifs are enriched in functionally related genes, allowing us to infer a candidate function for novel motifs. Our results demonstrate the power of comparative genomics to further our understanding of any species. Our methods are validated by the extensive experimental knowledge in yeast and will be invaluable in the study of complex genomes like that of the human.  相似文献   

6.
7.
8.
9.
10.
11.
12.
We present an efficient algorithm for detecting putative regulatory elements in the upstream DNA sequences of genes, using gene expression information obtained from microarray experiments. Based on a generalized suffix tree, our algorithm looks for motif patterns whose appearance in the upstream region is most correlated with the expression levels of the genes. We are able to find the optimal pattern, in time linear in the total length of the upstream sequences. We implement and apply our algorithm to publicly available microarray gene expression data, and show that our method is able to discover biologically significant motifs, including various motifs which have been reported previously using the same data set. We further discuss applications for which the efficiency of the method is essential, as well as possible extensions to our algorithm.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
During embryogenesis, tissue specification is triggered by the expression of a unique combination of developmental genes and their expression in time and space is crucial for successful development. Synexpression groups are batteries of spatiotemporally co-expressed genes that act in shared biological processes through their coordinated expression. Although several synexpression groups have been described in numerous vertebrate species, the regulatory mechanisms that orchestrate their common complex expression pattern remain to be elucidated. Here we performed a pilot screen on 560 genes of the vertebrate model system medaka (Oryzias latipes) to systematically identify synexpression groups and investigate their regulatory properties by searching for common regulatory cues. We find that synexpression groups share DNA motifs that are arranged in various combinations into cis-regulatory modules that drive co-expression. In contrast to previous assumptions that these genes are located randomly in the genome, we discovered that genes belonging to the same synexpression group frequently occur in synexpression clusters in the genome. This work presents a first repertoire of synexpression group common signatures, a resource that will contribute to deciphering developmental gene regulatory networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号