首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FMRFamide immunoreactivity was detected in all regions of the Limulus nervous system, including the brain (6.5 +/- 0.6 pg FMRFamide/mg), cardiac ganglion (2.06 +/- 0.67 pg FMRFamide/mg), and ventral nerve cord (5.8 +/- 0.7 pg FMRFamide/mg). The distribution of immunoreactive FMRFamide (irFMRFamide) was mapped by immunofluorescence and the distribution corresponded to regional RIA data. A good proportion of the CNS and cardiac ganglion neuropile contained irFMRFamide, and fluorescent cell bodies were observed in several areas. High performance liquid chromatography (HPLC) was employed to separate and characterize the FMRFamide-like peptides from extracts of Limulus brains. HPLC fractions were analyzed using coincidental radioimmunoassay and bioassay (the radula protractor muscle of Busycon contrarium). There appear to be at least three FMRFamide-like peptides in the Limulus brain, including one similar to clam FMRFamide. FMRFamide acts on Limulus heart in a biphasic manner at relatively high concentrations (10(-5)M), but has no effect on the activity of the isolated ventral nerve cord. These data suggest that in Limulus FMRFamide-like peptides are acting as neurotransmitters, or neuromodulators.  相似文献   

2.
The neurosecretory system of the earwig, Euborellia annulipes, contained material similar to that of FMRFamide, as shown by immunocytochemistry. Within the brain were two pairs of darkly staining perikarya in the medial protocerebrum, and up to four pairs of immunoreactive cells in the lateral protocerebrum. The corpora allata appeared immunoreactive in 10-day females, but not in 2-day-old adults. Additionally, immunoreactive material was detected in midgut endocrine cells of both 2- and 10-day-old females. FMRFamide at 1 to 100 nM did not inhibit juvenile hormone production by earwig corpora allata in vitro. This was true of glands of low activity from 2-day cat food-fed or starved virgin females, 10-day starved females, and those of relatively high activity from 10-day-old, cat food-fed females. In contrast, FMRFamide at 50 and 100 (but not at 1) nM stimulated gut motility in vitro in distended guts from 2-day fed females. Preparations from starved females and those from 10-day fed females (in which feeding behavior is on the decline) did not respond to exogenous FMRFamide with enhanced rates of contraction. Lastly, preparations from females starved for 7 days and subsequently fed for 3 days responded to 10 nM FMRFamide with increases in gut motility.  相似文献   

3.
This study examined the role of the brain and peripheral connections with the target organs in the appearance of neurosecretary material within the dorsal neural sheath of the ventral ganglion of the fly S. bullata. Specifically, the accumulation of the neuropeptide FMRFamide (the neurosecretary material) was examined by immunocytochemistry. Immunoreactions were performed on: (1) a normal intact ventral ganglion, (2) an isolated ventral ganglion that was cultured in vivo, and (3) a ventral ganglion that was isolated by transection from the brain, but retained its peripheral nerve connections. The results demonstrate that (a) the neurons of the ganglia survive and exhibit FMRFamide immune reaction independent of their peripheral connections, and (b) the accumulation of neuropeptide in the dorsal neural sheath is controlled by intact peripheral nerve connections with the ganglion. It is suggested that in the absence of their peripheral connections, the axons of FMRFamide immunoreactive neurons fail to invade the neural sheath resulting in the accumulation of neurosecretary material.  相似文献   

4.
Two so-called morphine modulatory peptides, an octapeptide and an octadecapeptide, have recently been isolated from bovine spinal cord. We have raised antibodies to the octapeptide (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2: FF-8), which in radioimmunoassay react with peptides terminating in Arg-Phe-NH2. This dipeptide is common to both the morphine modulatory peptides and the molluscan neuropeptide FMRF amide. The distribution and molecular forms of immunoreactive peptides were examined in the rat central nervous system and gastrointestinal tract. Highest concentrations of FF-8-like immunoreactivity were found in the dorsal spinal cord, brain stem and hypothalamus. The immunoreactive material in central nervous system extracts was resolved by reversed phase HPLC into three peaks of activity, the two largest peaks eluted in similar positions to the standard octapeptide and octadecapeptide. It appears that previously observed FMRF amide-like immunoreactivity in the rat central nervous system corresponds to peptides immunochemically and chromatographically similar to the two bovine spinal cord peptides.  相似文献   

5.
Summary Distribution of molluscan cardio-excitatory tetrapeptide Phe—Met—Arg—Phe—NH2 (FMRFamide) was determined by means of immunohistochemistry in the brain and neurohypophysis of the lamprey, Lampetra japonica. Many FMRFamide-like immunoreactive neurons were found in the periventricular nuclear region and in a region near the mammillary recess. Neurons situated in the former region were larger. The immunoreactive cell groups were shown to be located at sites differing from those of the AF-positive cell groups. The fibers of immunoreactive neurons extended in all directions within the brain and towards the spinal cord, some reaching the third ventricle and capillaries. Thus, FMRFamide-like immunoreactive peptides appear to function as neurotransmitters or neuromodulators and possibly also as neurohormones. FMRFamide-like immunoreactive material was rarely observed in the posterior neurohypophysis (neural lobe), but was noted to be present to a limited extent in the caudal part of the anterior neurohypophysis (median eminence). It would thus follow that FMRFamide-like immunoreactive neurons may not necessarily be related to the hypothalamo-neural lobe system, but may possibly be associated with the hypothalamoadenohypophysial system. The pineal body showed no FMRFamide-like immunoreactivity.  相似文献   

6.
The distribution of cells immunoreactive for the molluscan tetrapeptide FMRFamide in the brain and the pituitary of Eigenmannia was investigated immunohistochemically by the use of the peroxidase-antiperoxidase (PAP) technique and unlabelled antibodies. FMRFi neurons were located in the ganglion of the nervus terminalis at the rostroventral side of the bulbus olfactorius. FMRFi perikarya were also found in a dorsomedial diencephalic nucleus, in the nucleus ventromedialis, in some liquor-contacting neurons of the nucleus lateralis tuberis and of the nucleus recessus lateralis and posterior. The perikarya of the midbrain pre-pacemaker nucleus were only weakly immunoreactive for FMRFamide while large FMRFi neurons (T-cells) occurred in lamina VI of the torus semicircularis, in the brain stem, in dorsal and medial layers of the lobus lineae lateralis posterior (LLLp) and in the medullary electric organ pacemaker nucleus (pm). FMRFi fibers and nerve endings were found in the bulbus olfactorius, in medial areas of the telencephalon, and rather densely in the rostral diencephalon. Ventrocaudally to most of the hypothalamic nuclei the occurrence of immunoreactive fibres increased; many coursed to the pituitary through the pituitary stalk. FMRFi fibres also appeared in the deep layers of the tectum opticum, in the torus semicircularis, in the medial and lateral medulla and below the pacemaker nucleus. Wherever FMRFamide-immunoreactivity occurred fibres and nerve endings could be found in close contact with blood vessels.  相似文献   

7.
  • 1.1. FMRFamide immunoreactive neurons were detected in the central nervous system of the snail, Achatina fulica.
  • 2.2. FMRFamide immunoreactive neurons were found in all the ganglia comprising the central nervous system. In particular, the immunoreactivity was recognized in both the ordinary and giant neurons of the visceral and right parietal ganglia.
  • 3.3. In the cerebral and pleural ganglia, FMRFamide immunoreactive neurons were found only in the ordinary neurons. The immunoreactivity was shown to have a tendency to form a group in the cerebral and pedal ganglia.
  相似文献   

8.
The immunohistochemical localization of nine different neuropeptides was studied in the central nervous system of the amphioxus, Branchiostoma belcheri. In the brain, perikarya immunoreactive for urotensin I and FMRFamide were localized in the vicinity of the central canal. One of the processes of each of these perikarya was found to cross the dorso ventral slit-like lumen of the central canal. Oxytocin-immunoreactive short fibers, but not perikarya, were detected in the ventral part of the brain. Perikarya immunoreactive for arginine vasopressin/vasotocin, oxytocin and FMRFamide were widely distributed in the spinal cord. Arginine vasopressin/vasotocin-immunoreactive fibers often made contacts with Rohde cell axons. Angiotensin II-immunoreactive perikarya were observed in the posterior half of the spinal cord, and urotensin I-immunoreactive perikarya were found in the caudal region of the spinal cord. Cholecystokinin/gastrin-immunoreactive fibers, but not perikarya, were detected in the spinal cord; some extended as far as the ependymal layer of the cerebral ventricle. No colocalization of the peptides examined was observed. No immunoreactivity for atrial and brain natriuretic peptides nor for urotensin II was detected. The present study indicates that there are at least six separate neuronal systems that contain different peptides, respectively, in the central nervous system of the amphioxus. Their functions remain to be determined.Part of this investigation has previously been presented in abstract form (Uemura et al. 1989)  相似文献   

9.
Summary Particular neurons in the nervous system of the Colorado potato beetle, Leptinotarsa decemlineata, are recognized by antisera against bovine pancreatic polypeptide and FMRFamide. Both antisera react with the same neurons. Solid phase absorptions showed that antiserum against bovine pancreatic polypeptide cross-reacts with FMRFamide, whereas antiserum against FMRFamide cross-reacts with bovine pancreatic polypeptide. Some of the immunoreactive neurons have axons branching extensively within the neuropile, which suggests that the peptide is used as transmitter. In the corpus cardiacum, a neurohaemal organ in insects, numerous immunoreactive axon terminals are present. Here, the peptide material is presumably released as a hormone.  相似文献   

10.
R B Raffa 《Peptides》1988,9(4):915-922
First purified 11 years ago from clam ganglia, FMRFamide (Phe-Met-Arg-Phe-NH2) was quickly demonstrated to be cardioactive in several molluscan species. Subsequent discovery that FMRFamide, or FMRFamide-related peptides (FaRPs), were present in mammalian central nervous system and gastrointestinal tract prompted investigations into the effect of FMRFamide on mammals. FMRFamide has now been shown to be cardioexcitatory in mammals, to inhibit morphine-induced antinociception, and to block morphine-, defeat-, and deprivation-induced feeding. It also inhibits colonic propulsive motility, induces behavioral effects when administered intrathecally, and has been reported to have amnesic effects in rodents. A proposal has arisen that a FMRFamide-like substance is an endogenous opioid antagonist and has stimulated a search for such a substance. However, FMRFamide has only weak affinity for opioid receptors and not all the actions of FMRFamide appear to be explained by actions at opioid receptors. Alternative mechanisms have been proposed which suggest that FMRFamide acts as a neuromodulator.  相似文献   

11.
Physiologically important peptides are often encoded in precursors that contain several gene products; thus, regulation of expression of polypeptide proteins is crucial to transduction pathways. Differential processing of precursors by cell‐ or tissue‐specific proteolytic enzymes can yield messengers with diverse distributions and dissimilar activities. FMRFamide‐related peptides (FaRPs) are present throughout the animal kingdom and affect both neural and gastrointestinal functions. Organisms have several genes encoding numerous FaRPs with a common C‐terminal structure but different N‐terminal amino acid extensions. We have isolated SDNFMRFamide, DPKQDFMRFamide, and TPAEDFMRFamide contained in the Drosophila FMRFamide gene. To investigate the regulation of expression of FMRFamide peptides, we generated antisera to distinguish among the three neuropeptides. We have previously reported the distribution of SDNFMRFamide and DPKQDFMRFamide. In this article, we describe TPAEDFMRFamide expression. TPAEDFMRFamide antisera stain cells in embryonic, larval, pupal, and adult thoracic and abdominal ganglia. In addition, TPAEDFMRFamide‐immunoreactive material is present in a lateral protocerebrum cell in adult. Thus, TPAEDFMRFamide antisera staining of neural tissue is different from SDNFMRFamide or DPKQDFMRFamide. In addition, TPAEDFMRFamide antisera stain larval, pupal, and adult gut, while SDNFMRFamide and DPKQDFMRFamide do not. TPAEDFMRFamide immunoreactivity is present in cells stained by FMRFamide antisera. Taken together, these data support the conclusion that TPAEDFMRFamide is differentially processed from the FMRFamide polypeptide protein precursor and may act in both neural and gastrointestinal tissue. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 347–358, 1999  相似文献   

12.
Summary An immunohistochemical study for islet amyloid polypeptide (IAPP) was made on the gastrointestinal (GI) tract and pancreas of man and rat, using antisera raised against a synthetic peptide of C-terminal human IAPP (24–37) and a synthetic peptide of rat IAPP (18–37). A large number of IAPP-immunoreactive cells were found in the pyloric antrum, and a small number in the body of the stomach in both man and rat. Cytoplasmic processes extended out from the bipolar peripheral region of the immunoreactive cells, rather like neuronal processes, and some appeared to make contact with other immunoreactive cells. In addition, small numbers of immunoreactive cells were also seen in the duodenum and rectum, whereas they were absent from the jejunum, ileum and large intestine. An examination was made for evidence of colocalization of IAPP-immunoreactive material with material immunoreactive for gastrin, somatostatin, vasoactive intestinal polypeptide, pancreatic polypeptide, insulin, and glucagon, but none was found. IAPP-immunoreactive cells were also found in the pancreas of non-diabetic and non-insulin-dependent diabetic patients, but they were completely absent from a patient with insulin-dependent diabetes mellitus despite the presence of IAPP in the plasma. The results of these studies suggest that the peptide may have a biological role in situ in the GI tract and, in addition to the pancreas, may be a possible source of plasma IAPP.  相似文献   

13.
A Chiba  Y Honma 《Histochemistry》1992,98(1):33-38
Localization of the molluscan cardioexcitatory tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) in the brain and hypophysis of the brown hagfish, Paramyxine atami, was examined by immunohistochemistry specially regarding a possible relationship with neuropeptide Y (NPY). FMRFamide-immunoreactive fibers were demonstrated in many regions of the brain, with the highest density in the diencephalon. However, no immunoreactivity was found in the hypophysis. Labeled cells were chiefly located in the nucleus hypothalamicus of the diencephalon, although a few cells were recognized in the ventrolateral area of the caudal tegmentum. Examination of adjacent sections immunostained alternatively with anti-NPY antiserum and anti-FMRFamide antiserum showed overlapping of the distributional patterns of the immunoreactive structures in the brain. Moreover, the same cells in the nucleus hypothalamicus were immunostained with both antisera. Cross-blocking experiments showed that the FMRF-amide-immunoreactivity is abolished by preabsorption of the antiserum with homologous antigen, but not eliminated completely by pretreatment with appropriate antigens (NPY, avian pancreatic polypeptide and methionine-enkephalin-Arg-Phe). In contrast, the NPY-immunoreactivity was blocked by pretreatment of the antiserum with NPY, pancreatic polypeptide or FMRFamide, although no blocking by enkephalin was observed. Accordingly, the present study shows that, in the brown hagfish, FMRFamide-immunoreactive structures in the brain can be recognized by anti-NPY antiserum.  相似文献   

14.
The presence of immunoreactive α melanocyte stimulating hormone (IαMSH) was investigated in both mucosal and muscular layers of the various areas of the gastrointestinal tract. IαMSH was present in both layers in all areas of the gastrointestinal tract but the esophageal mucosa and muscularis in saline extracts. The highest concentrations were found in the duodenum. Hypophysectomized males tended to have higher content than intact males. There was no difference between intact estrogen-primed females and hypophysectomized females up to 1 month post hypophysectomy in any area. The tract of 3 month hypophysectomized females showed lower levels than the intact estrogen-primed females in 5 areas; however, in similar groups of 3 month hypophysectomized females which were estrogen primed, 8 of the 10 areas contained more IαMSH than the intact estrogen-primed females. Acid extracts from female rats during the estrous cycle showed no cycle-dependent differences. Comparison of acid and saline extracts showed an absence of IαMSH in gastric tissues and a decrease in the duodenal muscularis in acid extracts but no consistent differences were found in other areas. These results suggest that the IαMSH found in the gastrointestinal tract is not of pituitary origin but may be produced in the gastrointestinal tract. The induction of increased content by estrogen priming in hypophysectomized rats suggests that estrogen priming may induce production. The absence of IαMSH in acid extracts of the stomach suggests that a difference in distribution of pro-opio-cortin products may exist in the gastrointestinal tract.  相似文献   

15.
After the extirpation of the brain reorganization of the peptidergic (FMRFamide, neuropeptide Y, proctolin) systems was studied in the newly forming cerebral ganglion of the annelid Eisenia fetida. During regeneration, all immunoreactive fibres appear on the 1st-2nd postoperative day. At the beginning of regeneration, immunoreactive neurons and fibres form a mixed structure in the wound tissue. On the 3rd postoperative day, FMRFamide positive and neuropeptide Y-immunoreactive, while on the 7th postoperative day proctolin-immunoreactive neurons appear in the loose wound tissue. From the 25th postoperative day a capsule gradually develops around it. The neurons of the preganglion move to the surface of the newly appearing preganglion. The number of these cells gradually increase, and by the 72th-80th postoperative days the localization and number of peptide-immunoreactive neurons is similar to that in the intact one. The neurons of all examined peptidergic systems may originate from the neuroblasts, situated on the inner and outer surface of the intact ganglia (e.g. suboesophageal and ventral cord ganglia). In addition FMRFamide and proctolin immunoreactive neurons may take their derive by mitotic proliferation from the pharyngeal neurons, too.  相似文献   

16.
Summary The distribution of serotonin-, tyrosine hydroxylase-, and FMRFamide-immunoreactive neuronal elements, as well as the concentrations of serotonin and dopamine in the different parts of the gastrointestinal tract, were studied in the snail Helix pomatia. The sensitivity of the spontaneous contractions of the alimentary tract to serotonin, dopamine, and FMRFamide was also tested. Serotonin-, tyrosine hydroxylase-, and FMRFamide-immunoreactive elements could be demonstrated in each part of the gastrointestinal tract, but they showed different innervation patterns. Serotonin- and tyrosine hydroxylase-immunoreactive elements were dominant in the submucosal layer, whereas FMRFamide-immunoreactive elements were dominant in both the mucosal and submucosal layers. Tyrosine hydroxylase-immunoreactive elements were confined to the longitudinal muscle trabeculae of submucosa, whereas serotonin-immunoreactive elements were distributed throughout the submucosal layer. No serotonin-immunoreactive cell bodies, but only fibers, could be detected in the gastrointestinal tract, and therefore they represent extrinsic elements. Tyrosine hydroxylase- and FMRFamide-immunoreactive cell bodies represent intrinsic elements of the tract. The occurrence and density of the serotonin- and tyrosine hydroxylase-immunoreactive elements showed significant differences in the different parts of the alimentary tract, in accordance with HPLC assays, which revealed a significant frontocaudal decrease in both the serotonin (from 2.11 to 1.21 pM/mg) and dopamine (from 3.28 to 0.52 pM/mg) contents of the different parts of the alimentary tract. Dopamine at 10-5 M concentration proved to be effective only on the longitudinal muscles by increasing the tone and frequency of contractions, but was ineffective on the circular muscles. Serotonin affected both the longitudinal and circular muscles. Serotonin at 10-5 M concentration decreased the tone and increased the frequency of low-amplitude contractions of the longitudinal muscles of the esophagus and the gizzard but increased both the tone and frequency of the crop. Serotonin at 10-9 M concentration slightly decreased the tone and blocked the contractions of the circular muscles in the crop but at 10-5 M concentration induced contractions of the circular muscles in the gizzard. FMRFamide at 10-6 M concentration decreased the tone and was shown to block the contractions of both the longitudinal and circular muscles.  相似文献   

17.
The methods of immunohystochemistry and electron microscopic immunocytochemistry were applied for the investigation of the localization of the substances P (SP)- and FMRFamide in the auricle of the mollusc Achatina fulica. Nerve fibers that innervate a snail auricle are in close contact with the granular cells (GC) disposed among muscular and endocardial cells, forming the neuroendocrinal complexes. Both neuromediators were detected in the cells of these auricular neuroendocrinal complexes. The method of immunoperoxidase histochemistry has shown the localization of SP- and FMRFamide immunoreactive material in granules of auricular GCs. Electron microscopic immunocytochemistry has confirmed the presence of SP- and FMRFamide-immunoreactive material in GC granules; moreover, it has also shown its presence in the neurosecretory granules of nerve fibers, both located in neuroendocrinal complexes in contact with cardiomyocytes.  相似文献   

18.
The distribution of immunoreactive alpha-melanocyte-stimulating hormone (alpha-MSH) in the central nervous system and pituitary of the elasmobranch fish Scyliorhinus canicula was determined by the indirect immunofluorescence and the peroxidase-antiperoxidase methods using a highly specific antiserum. Perikarya containing alpha-MSH-like immunoreactivity were localized in the dorsal portion of the posterior hypothalamus, mainly in the tuberculus posterioris and sacci vasculosus nuclei. Immunoreactive alpha-MSH cell bodies were found in the dorsal wall and ventral region of the caudal part of the tuberculum posterioris. These structures were densely innervated by fine beaded immunoreactive fibers. Some alpha-MSH immunoreactive cells were occasionally detected in the ventral part of the nucleus periventricularis. Scattered cell bodies and fibers were also observed in the dorsal wall of the posterior recess. Outside the hypothalamus very few fibers were detected in the dorsal thalamus and mesencephalon. No immunoreactivity was found in any other parts of the brain. The alpha-MSH immunoreactive material localized in the brain was characterized by combining high-performance liquid chromatography (HPLC) analysis and radioimmunological detection. Brain and pituitary extracts exhibited displacement curves which were parallel to that obtained with synthetic alpha-MSH. The concentrations of alpha-MSH immunoreactive material were determined in 5 different regions of the brain. The highest concentration was found in the hypothalamus. HPLC analysis resolved two major forms of immunoreactive alpha-MSH in the hypothalamus, which had been same retention times as des-N alpha-acetyl-alpha-MSH and its sulfoxide derivative. These results provide the first evidence for the presence of alpha-MSH-like peptides in the fish brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Summary FMRFamide-like immunoreactivity has been localized in different parts of the hydra nervous system. Immunoreactivity occurs in nerve perikarya and processes in the ectoderm of the lower peduncle region near the basal disk, in the ectoderm of the hypostome and in the ectoderm of the tentacles. The immunoreactive nerve perikarya in the lower peduncle region form ganglion-like structures. Radioimmunoassays of extracts of hydra gave displacement curves parallel to standard FMRFamide and values of at least 8 pmol/gram wet weight of FMRFamide-like immunoreactivity. The immunoreactive material eluted from Sephadex G-50 in several components emerging shortly before or after position of authentic FMRFamide. The presence of FMRFamide-like material in coelenterates shows that this family of peptides is of great antiquity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号