首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Allergic inflammation in the airway is generally considered a Th2-type immune response. However, Th17-type immune responses also play important roles in this process, especially in the pathogenesis of severe asthma. IL-22 is a Th17-type cytokine and thus might play roles in the development of allergic airway inflammation. There is increasing evidence that IL-22 can act as a proinflammatory or anti-inflammatory cytokine depending on the inflammatory context. However, its role in Ag-induced immune responses is not well understood. This study examined whether IL-22 could suppress allergic airway inflammation and its mechanism of action. BALB/c mice were sensitized and challenged with OVA-Ag to induce airway inflammation. An IL-22-producing plasmid vector was delivered before the systemic sensitization or immediately before the airway challenge. Delivery of the IL-22 gene before sensitization, but not immediately before challenge, suppressed eosinophilic airway inflammation. IL-22 gene delivery suppressed Ag-induced proliferation and overall cytokine production in CD4(+) T cells, indicating that it could suppress Ag-induced T cell priming. Antagonism of IL-22 by IL-22-binding protein abolished IL-22-induced immune suppression, suggesting that IL-22 protein itself played an essential role. IL-22 gene delivery neither increased regulatory T cells nor suppressed dendritic cell functions. The suppression by IL-22 was abolished by deletion of the IL-10 gene or neutralization of the IL-10 protein. Finally, IL-22 gene delivery increased IL-10 production in draining lymph nodes. These findings suggested that IL-22 could have an immunosuppressive effect during the early stage of an immune response. Furthermore, IL-10 plays an important role in the immune suppression by IL-22.  相似文献   

2.
Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4+ T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.  相似文献   

3.
4.
Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism   总被引:21,自引:0,他引:21  
The Rho family GTPases Cdc42, Rac1 and RhoA control many of the changes in the actin cytoskeleton that are triggered when growth factor receptors and integrins bind their ligands [1] [2]. Rac1 and Cdc42 stimulate the formation of protrusive structures such as membrane ruffles, lamellipodia and filopodia. RhoA regulates contractility and assembly of actin stress fibers and focal adhesions. Although prolonged integrin engagement can stimulate RhoA [3] [4] [5], regulation of this GTPase by early integrin-mediated signals is poorly understood. Here we show that integrin engagement initially inactivates RhoA, in a c-Src-dependent manner, but has no effect on Cdc42 or Rac1 activity. Additionally, early integrin signaling induces activation and tyrosine phosphorylation of p190RhoGAP via a mechanism that requires c-Src. Dynamic modulation of RhoA activity appears to have a role in motility, as both inhibition and activation of RhoA hinder migration [6] [7] [8]. Transient suppression of RhoA by integrins may alleviate contractile forces that would otherwise impede protrusion at the leading edge of migrating cells.  相似文献   

5.
The virulence-associated V Ag (LcrV) of pathogenic Yersinia species is part of the translocation apparatus, required to deliver antihost effector proteins (Yersinia outer proteins) into host cells. An orthologous protein (denoted as PcrV) has also been identified in the ExoS regulon of Pseudomonas aeruginosa. Additionally, it is known that LcrV is released by yersiniae into the environment and that LcrV causes an immunosuppressive effect when injected into mice. In this study, we demonstrate for the first time that rLcrV, but not PcrV, is capable of suppressing TNF-alpha production in zymosan A-stimulated mouse macrophages and the human monocytic Mono-Mac-6 cell line. The underlying mechanism of TNF-alpha suppression could be assigned to LcrV-mediated IL (IL)-10 production, because 1) LcrV induces IL-10 release in macrophages, 2) anti-IL-10 Ab treatment completely abrogated TNF-alpha suppression, and 3) TNF-alpha suppression was absent in LcrV-treated macrophages of IL-10-deficient (IL-10-/-) mice. The relevance of LcrV-mediated immunosuppression for the pathogenicity of yersiniae became evident by experimental infection of mice; in contrast to wild-type mice, IL-10-/- mice were highly resistant against Yersinia infection, as shown by lower bacterial load in spleen and liver, absent abscess formation in these organs, and survival.  相似文献   

6.
Elevated atmospheric ozone concentrations (70 ppb) reduced the sensitivity of stomatal closure to abscisic acid (ABA) in Leontodon hispidus after at least 24 h exposure (1) when detached leaves were fed ABA, and (2) when intact plants were sprayed or injected with ABA. They also reduced the sensitivity of stomatal closure to soil drying around the roots. Such effects could already be occurring under current northern hemisphere peak ambient ozone concentrations. Leaves detached from plants which had been exposed to elevated ozone concentrations generated higher concentrations of ethylene, although leaf tissue ABA concentrations were unaffected. When intact plants were pretreated with the ethylene receptor binding antagonist 1-methylcyclopropene, the stomatal response to both applied ABA and soil drying was fully restored in the presence of elevated ozone. Implications of ethylene's antagonism of the stomatal response to ABA under oxidative stress are discussed. We suggest that this may be one mechanism whereby elevated ozone induces visible injury in sensitive species. We emphasize that drought linked to climate change and tropospheric ozone pollution, are both escalating problems. Ozone will exacerbate the deleterious effects of drought on the many plant species including valuable crops that respond to this pollutant by emitting more ethylene.  相似文献   

7.
EF Castillo  KS Schluns 《Cytokine》2012,59(3):479-490
Transpresentation has emerged as an important mechanism mediating IL-15 responses in a subset of lymphocytes during the steady state. In transpresentation, cell surface IL-15, bound to IL-15Rα is delivered to opposing lymphocytes during a cell-cell interaction. The events most dependent on IL-15 include the development and homeostasis of memory CD8 T cells, Natural Killer cells, invariant Natural Killer T cells, and intraepithelial lymphocytes. As lymphocyte development and homeostasis involve multiple steps and mechanisms, IL-15 transpresentation can have diverse roles throughout. Moreover, distinct stages of lymphocyte differentiation require IL-15 transpresented by different cells, which include both hematopoietic and non-hematopoietic cell types. Herein, we will describe the points where IL-15 transpresentation impacts these processes, the specific cells thought to drive IL-15 responses, as well as their role in the course of development and homeostasis.  相似文献   

8.
IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice   总被引:16,自引:0,他引:16  
We previously demonstrated that a specialized subset of immature myeloid cells migrate to lymphoid organs as a result of tumor growth or immune stress, where they suppress B and T cell responses to Ags. Although NO was required for suppression of mitogen activation of T cells by myeloid suppressor cells (MSC), it was not required for suppression of allogenic responses. In this study, we describe a novel mechanism used by MSC to block T cell proliferation and CTL generation in response to alloantigen, which is mediated by the enzyme arginase 1 (Arg1). We show that Arg1 increases superoxide production in myeloid cells through a pathway that likely utilizes the reductase domain of inducible NO synthase (iNOS), and that superoxide is required for Arg1-dependent suppression of T cell function. Arg1 is induced by IL-4 in freshly isolated MSC or cloned MSC lines, and is therefore up-regulated by activated Th2, but not Th1, cells. In contrast, iNOS is induced by IFN-gamma and Th1 cells. Because Arg1 and iNOS share L-arginine as a common substrate, our results indicate that L-arginine metabolism in myeloid cells is a potential target for selective intervention in reversing myeloid-induced dysfunction in tumor-bearing hosts.  相似文献   

9.
The closely related Th2 cytokines, IL-4 and IL-13, share many biological functions that are considered important in the development of allergic airway inflammation and airway hyperresponsiveness (AHR). The overlap of their functions results from the IL-4R alpha-chain forming an important functional signaling component of both the IL-4 and IL-13 receptors. Mutations in the C terminus region of the IL-4 protein produce IL-4 mutants that bind to the IL-4R alpha-chain with high affinity, but do not induce cellular responses. A murine IL-4 mutant (C118 deletion) protein (IL-4R antagonist) inhibited IL-4- and IL-13-induced STAT6 phosphorylation as well as IL-4- and IL-13-induced IgE production in vitro. Administration of murine IL-4R antagonist during allergen (OVA) challenge inhibited the development of allergic airway eosinophilia and AHR in mice previously sensitized with OVA. The inhibitory effect on airway eosinophilia and AHR was associated with reduced levels of IL-4, IL-5, and IL-13 in the bronchoalveolar lavage fluid as well as reduced serum levels of OVA-IGE: These observations demonstrate the therapeutic potential of IL-4 mutant protein receptor antagonists that inhibit both IL-4 and IL-13 in the treatment of allergic asthma.  相似文献   

10.
Proinflammatory Th1 responses are believed to be involved in the induction and perpetuation of rheumatoid arthritis. However, the role of IFN-gamma, the major cytokine produced by Th1 cells, is still incompletely defined. In the present study, we investigated the effects of IFN-gamma deficiency (IFN-gamma(-/-)) on the course of experimental murine Ag-induced arthritis (AIA). In the acute stage of disease, IFN-gamma(-/-) AIA mice showed significantly increased inflammatory responses compared with wild-type C57BL/6 AIA mice, i.e., exacerbated joint swelling, increased delayed-type hypersensitivity reaction, and increased histopathological scores of arthritis. Intraarticular administration of exogenous IFN-gamma at induction of AIA significantly suppressed these acute aggravation effects. Stimulated cells isolated from lymph nodes and spleen of IFN-gamma(-/-) AIA mice showed increased production of IL-2, IL-4, IL-5, IL-6, but most prominently of IL-17. These elevations were paralleled by decreased humoral immune responses, with low serum levels of total and Ag-specific IgG (IgG1, IgG2a(b), IgG2b, IgG3). At immunohistology, the knee joints of IFN-gamma(-/-) AIA mice showed massive neutrophil granulocyte infiltration. Treatment with mAbs neutralizing IL-17 diminished the acute inflammation. In vitro, Th cell expansion and production of IL-17 upon restimulation were effectively and dose dependently inhibited by IFN-gamma. These results clearly demonstrate that IFN-gamma has anti-inflammatory properties during the initial phase of AIA, and indicate that IFN-gamma deficiency exerts disease-promoting effects, preferentially via IL-17-modulated pathways.  相似文献   

11.
ABSTRACT

Dysregulation of macroautophagy/autophagy is implicated in obesity and insulin resistance. However, it remains poorly defined how autophagy regulates adipocyte development. Using adipose-specific rptor/raptor knockout (KO), atg7 KO and atg7 rptor double-KO mice, we show that inhibiting MTORC1 by RPTOR deficiency led to autophagic sequestration of lipid droplets, formation of LD-containing lysosomes, and elevation of basal and isoproterenol-induced lipolysis in vivo and in primary adipocytes. Despite normal differentiation at an early phase, progressive degradation and shrinkage of cellular LDs and downregulation of adipogenic markers PPARG and PLIN1 occurred in terminal differentiation of rptor KO adipocytes, which was rescued by inhibiting lipolysis or lysosome. In contrast, inactivating autophagy by depletion of ATG7 protected adipocytes against RPTOR deficiency-induced formation of LD-containing lysosomes, LD degradation, and downregulation of adipogenic markers in vitro. Ultimately, atg7 rptor double-KO mice displayed decreased lipolysis, restored adipose tissue development, and upregulated thermogenic gene expression in brown and inguinal adipose tissue compared to RPTOR-deficient mice in vivo. Collectively, our study demonstrates that autophagy plays an important role in regulating adipocyte maturation via a lipophagy and lipolysis-dependent mechanism.  相似文献   

12.
Recent studies have suggested that some kinds of microbial infection may have a crucial role in the development of many diseases such as autoimmune diseases and certain types of cancer. It has been reported that some chronic infections, such as Chlamydia pneumoniae, and immunological dysfunctions are associated with age-related macular degeneration (AMD), a leading cause of blindness. To evaluate the association between systemic low-level inflammation induced by infection and AMD pathogenesis, we investigated whether intraperitoneal injection of lipopolysaccharide (LPS) can modulate the development of laser-induced choroidal neovascularization (CNV), a key feature of AMD. Contrary to our expectations, the sizes of CNV in mice with LPS pretreatment were approximately 65% smaller than those of the control mice. After LPS pretreatment, serum IL-10 concentration and IL-10 gene expression in peritoneal macrophages and in the posterior part of the eye increased. Peritoneal injection of anti-IL10 antibody reduced CNV suppression by LPS pretreatment. Moreover, adoptive transfer of the resident peritoneal macrophages from LPS-treated mice into control littermates resulted in an approximately 26% reduction in the size of CNV compared with PBS-treated mice. We concluded that CNV formation was suppressed by low-dose LPS pretreatment via IL-10 production by macrophages.  相似文献   

13.
Type I interferon (IFN) production plays pivotal roles in host antiviral innate immune responses, but an excessive production of type I IFN leads to the development of immunopathological conditions. Investigations on the regulatory mechanisms underlying host type I IFN production are currently of great interest. Here, we found that the expression of lectin family member Siglec1 was upregulated by viral infection in macrophages, which was dependent on the IFN/JAK/STAT1 signaling pathway. Siglec1 was found to negatively regulate viral infection-triggered type I IFN production. Mechanistically, Siglec1 associates with DAP12 to recruit and activate the scaffolding function of SHP2; SHP2 then recruits E3 ubiquitin ligase TRIM27, which induces TBK1 degradation via K48-linked ubiquitination at Lys251 and Lys372. Therefore, viral infection-induced upregulation of Siglec1 feedback loop inhibits type I IFN production and suppresses antiviral innate immune responses. Our study outlines a novel mechanism of negative regulation of type I IFN production, which may help virus to escape immune elimination.  相似文献   

14.
15.
IL-13 regulates the immune response to inhaled antigens   总被引:3,自引:0,他引:3  
The large inhibitory effect of IL-13 blockers on the asthma phenotype prompted us to ask whether IL-13 would play a role in regulating the allergic immune response in addition to its documented effects on structural pulmonary cells. Because IL-13 does not interact with murine T or B cells, but with monocytes, macrophages, and dendritic cells (DCs), we examined the role of IL-13 in the activation of pulmonary macrophages and DCs and in the priming of an immune response to a harmless, inhaled Ag. We found that a majority of cells called "alveolar or interstitial macrophages" express CD11c at high levels (CD11c(high)) and are a mixture of at least two cell types as follows: 1) cells of a mixed phenotype expressing DC and macrophage markers (CD11c, CD205, and F4/80) but little MHC class II (MHC II); and 2) DC-like cells expressing CD11c, CD205, MHC II, and costimulatory molecules. Endogenous IL-13 was necessary to induce and sustain the increase in MHC II and CD40 expression by pulmonary CD11c(high) cells, demonstrated by giving an IL-13 inhibitor as a measure of prevention or reversal to allergen-primed and -challenged mice. Conversely, IL-13 given by inhalation to naive mice increased the expression of MHC II and costimulatory molecules by CD11c(high) cells in an IL-4Ralpha-dependent manner. We found that exogenous IL-13 exaggerated the immune and inflammatory responses to an inhaled, harmless Ag, whereas endogenous IL-13 was necessary for the priming of naive mice with an inhaled, harmless Ag. These data indicate that blockade of IL-13 may have therapeutic potential for controlling the immune response to inhaled Ags.  相似文献   

16.
Quick-frozen spleen of mice immunized with sheep red blood cells was homogenized and centrifuged. Supernatant was used as a source of suppressor factor (SF). It was shown that SF inhibited antibody immune response to thymus-dependent antigens and delayed hypersensitivity reaction. SF did not inhibit antibody formation to thymus-independent antigen. SF activity disappeared after its treatment with anti-Ig immunosorbent.  相似文献   

17.
18.
The present study was conducted to determine the effects of intracerebroventricular administration of arginine vasopressin (AVP) on the preovulatory prolactin (PRL) surge. Hourly injections of 1 or 5 micrograms AVP from 1200 to 1700 hr on proestrus prevented increases in plasma PRL levels that afternoon. However, following cessation of AVP treatment, a marked increase in PRL levels occurred between 1830 and 2030 hr. This "rebound" secretion of PRL was greater in rats given 5 micrograms AVP than in rats given the lower dose. The suppression of PRL release by AVP appears to be mediated by dopamine since 5 micrograms AVP failed to inhibit PRL release in animals pretreated with the dopamine antagonist domperidone. Interestingly, under these conditions, AVP increased PRL release compared to levels observed in saline-treated rats. In addition to suppressing PRL release, AVP exerted a dose-dependent inhibition of preovulatory LH release. The results suggest a possible interaction between AVP and dopamine in controlling PRL release which likely takes place within the median eminence.  相似文献   

19.
We report, herein, an attempt to determine whether an IL-10-induced immunological state affects the response of macrophages against Salmonella Typhimurium (ST). Pretreatment with mrIL-10 induced the intracellular invasion of ST into macrophages in a dose-dependent manner. It also activated AKT phosphorylation, cyclin D1, Bcl-XL, and COX-2 upon ST infection, which may correlate with Salmonella’s survival within the macrophages. However, I-κB phosphorylation was shown to be inhibited, along with the expression of TNF-α and MIP-2α mRNA. Therefore, IL-10 not only suppresses the bactericidal response of macrophages against ST, but also ultimately causes infected macrophages to function as hosts for ST replication.  相似文献   

20.
Cytokines play an important role in modulating the development and function of dendritic cells (DCs). Type I IFNs activate DCs and drive anti-viral responses, whereas IL-4 is the prototype of a Th2 cytokine. Evidence suggests that type I IFNs and IL-4 influence each other to modulate DC functions. We found that two type I IFNs, IFN-alpha and IFN-beta, stimulated a similar costimulatory profile in myeloid resting DCs. IL-4 suppressed the response of myeloid DCs to both type I IFNs in vitro and in vivo by impairing the up-regulation of MHC and costimulatory molecules and the production of cytokines, such as IL-6 and IL-15, and anti-viral genes, such as Mx-1, upon type I IFN stimulation. In dissecting the mechanism underlying this inhibition, we characterized the positive feedback loop that is triggered by IFN-alpha in primary DCs and found that IL-4 inhibited the initial phosphorylation of STAT1 and STAT2 (the transducers of signaling downstream of IFN-alpha and -beta receptors (IFNARs)) and reduced the up-regulation of genes involved in the amplification of the IFN response such as IRF-7, STAT1, STAT2, IFN-beta, and the IFNARs in vitro and in vivo. Therefore, IL-4 renders myeloid DCs less responsive to paracrine type I IFNs and less potent in sustaining the autocrine positive loop that normally amplifies the effects of type I IFNs. This inhibition could explain the increased susceptibility to viral infections observed during Th2-inducing parasitoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号