首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for the selection of bacterial strains used as probiotics. However, little information is available on FOS transport and metabolism by lactic acid bacteria and other probiotic bacteria. The objectives of this research were to identify and characterize the FOS transport system of Lactobacillus paracasei 1195. Radiolabeled FOS was synthesized enzymatically from [(3)H]sucrose and purified by column and thin-layer chromatography, yielding three main products: glucose (G) alpha-1,2 linked to two, three, or four fructose (F) units (GF(2), GF(3), and GF(4), respectively). FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell supernatants, indicating that transport must precede hydrolysis. FOS transport assays revealed that the uptake of GF(2) and GF(3) was rapid, whereas little GF(4) uptake occurred. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake but that other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, or other metabolic inhibitors, FOS transport rates were reduced by up to 60%; however, ionophores that abolished the proton motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette transport systems. De-energized cells had low intracellular ATP concentrations and had a reduced capacity to accumulate FOS. These results suggest that FOS transport in L. paracasei 1195 is mediated by an ATP-dependent transport system having specificity for a narrow range of substrates.  相似文献   

3.
Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with beta-(2-->1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>10(7)) with beta-(2-->1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.  相似文献   

4.
At least five types of beta-fructofuranosidases (FFases I, II, III, IV and V) were found in the cell wall of Aureobasidium pullulans DSM2404 grown in a sucrose medium. The fungus first catalyzed the transfructosylation of sucrose, and produced fructooligosaccharide (FOS) and glucose in the culture. FOS was then consumed together with glucose, and finally fructose was produced. In the FOS-producing period, the fungus expressed FFase I as a dominant FFase. However, in the FOS-degrading period, the levels of FFases II, III, IV and V increased. The ratios of transfructosylating activity to hydrolyzing activity by FFases I-V were 14.3, 12.1, 11.7, 1.28 and 8.11, respectively. When glucose was used as a carbon source, only FFase I showed significant activity. On the other hand, the activities of all five FFases were detected when FOS or fructose was used as a carbon source. These results suggested that the expression of FFase I was not repressed by glucose, but those of FFases II-V were strongly inhibited in the presence of glucose. It is considered that FFase I plays a key role in FOS production by this fungus, whereas FFase IV may function as a FOS-degrading enzyme with its strong hydrolyzing activity.  相似文献   

5.
6.
Fermentation of fructooligosaccharides (FOS) and other oligosaccharides has been suggested to be an important property for the selection of bacterial strains used as probiotics. However, little information is available on FOS transport and metabolism by lactic acid bacteria and other probiotic bacteria. The objectives of this research were to identify and characterize the FOS transport system of Lactobacillus paracasei 1195. Radiolabeled FOS was synthesized enzymatically from [3H]sucrose and purified by column and thin-layer chromatography, yielding three main products: glucose (G) α-1,2 linked to two, three, or four fructose (F) units (GF2, GF3, and GF4, respectively). FOS hydrolysis activity was detected only in cell extracts prepared from FOS- or sucrose-grown cells and was absent in cell supernatants, indicating that transport must precede hydrolysis. FOS transport assays revealed that the uptake of GF2 and GF3 was rapid, whereas little GF4 uptake occurred. Competition experiments showed that glucose, fructose, and sucrose reduced FOS uptake but that other mono-, di-, and trisaccharides were less inhibitory. When cells were treated with sodium fluoride, iodoacetic acid, or other metabolic inhibitors, FOS transport rates were reduced by up to 60%; however, ionophores that abolished the proton motive force only slightly decreased FOS transport. In contrast, uptake was inhibited by ortho-vanadate, an inhibitor of ATP-binding cassette transport systems. De-energized cells had low intracellular ATP concentrations and had a reduced capacity to accumulate FOS. These results suggest that FOS transport in L. paracasei 1195 is mediated by an ATP-dependent transport system having specificity for a narrow range of substrates.  相似文献   

7.
The subject of this study was the fructan and sucrose degrading enzymes of bacterium Pseudobutyrivibrio ruminis strain 3. It was stated that cell extract from bacteria growing on inulin contained β-fructofuranosidase (EC 3.2.1.80 and/or EC 3.2.1.26) and sucrose phosphorylase (EC 2.4.1.7), while the bacteria maintained on sucrose showed only phosphorylase. Partially purified β-fructofuranosidase digested inulooligosaccharides and sucrose to fructose or fructose and glucose, respectively, but was unable to degrade the long chain polymers of commercial inulin and Timothy grass fructan. Digestion rate of inulooligosaccharides fit Michaelis–Menten kinetics with Vmax 5.64 μM/mg/min and Km 1.274%, respectively, while that of sucrose was linear. Partially purified sucrose phosphorylase digested only sucrose. The digestion products were fructose, glucose-1P and free glucose. The reaction was in agreement with Michaelis–Menten kinetics. The Vmax were 0.599 and 0.584 μM/mg/min, while Km were 0.190 and 0.202% for fructose release and glucose-1P formation, respectively, when bacteria grew on inulin. The Vmax were, however, 1.37 and 1.023 μM/mg/min, while Km were 0.264 and 0.156%, if bacteria were grown on sucrose. The free glucose was hardly detectable for the enzyme originated from inulin grown bacteria, but glucose levels ranged from 0.05 to 0.25 μM/mg/min, when cell extract from bacteria grown on sucrose was used. Release of free glucose was observed when no inorganic phosphate was present in reaction mixture.  相似文献   

8.
Uptake and Utilization of Sugars in Cultured Rice Cells   总被引:4,自引:0,他引:4  
Suspension cultured cells of rice (Oryza sativa) were grownin a medium containing sucrose. Sucrose was rapidly hydrolyzedextracellularly in the early stage of subculture with a concomitantdecrease in the medium pH. The hydrolysis may be due to cellwall associated acid invertase and may be promoted by acidificationof the medium. The resulting glucose and fructose seemed tobe utilized equally. The cells grown on either sucrose, glucoseor fructose contained each of these sugars and possessed cellwall associated invertase activity. Protoplasts prepared bycell wall degrading enzymes utilized preferentially glucoseor fructose rather than sucrose. These results suggest thatexogenous sucrose is hydrolyzed by the cell wall associatedinvertase to hexoses, which are then taken up and metabolized. (Received November 25, 1987; Accepted February 8, 1988)  相似文献   

9.
Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(21)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(21) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.  相似文献   

10.
Changes in insoluble or cell wall invertase and soluble invertase activity were examined during callus induction from tobacco pith-phloem explants and during callus proliferation on sucrose, glucose and fructose as carbon sources, or on transfer from culture on the hexoses to sucrose. In all cases there was a growth independent transitory increase in cell wall invertase early in culture. The magnitude of the increase was greatest in the presence of sucrose. Cell wall invertase was found to possess catalytic activity in situ, whether or not the tissue was grown on sucrose. It is hypothesized that the transitory increase in cell wall invertase plays a role in sucrose hydrolysis during wound respiration, which takes place early in culture.  相似文献   

11.
The primary utilization of carbohydrates by cell suspension cultures of Rudgea jasminoides, a native woody Rubiaceae from tropical forests, was investigated. Sucrose, glucose + fructose, glucose, or fructose were supplied as carbon sources. The growth curves of R. jasminoides cultured in glucose + fructose, glucose, or fructose showed similar patterns to that observed when sucrose was supplied to the cells, except that an increase in dry mass was observed at the beginning of the stationary growth phase in the media containing only one monosaccharide. The increase in hexose levels in the media during the early stages of the cultures indicated extracellular hydrolysis of sucrose, which was further supported by the increase in the activity of acid invertase bound to the cell wall. Glucose was preferentially taken up, whereas uptake of fructose was delayed until glucose was nearly depleted from the medium. Measurements of intracellular sucrose content and cytoplasmatic and vacuolar invertases indicate that the enzymatic activity seems to be correlated with a decrease in the hexose flux into the cells of R. jasminoides. Our results indicate that the behavior of cell suspension cultures of R. jasminoides regarding sugar utilization seems to be similar to other dicotyledonous undifferentiated cell suspension cultures.  相似文献   

12.
Lactobacillus pentosus B235, which was isolated as part of the dominant microflora from a garlic containing fermented fish product, was grown in a chemically defined medium with inulin as the sole carbohydrate source. An extracellular fructan beta-fructosidase was purified to homogeneity from the bacterial supernatant by ultrafiltration, anion exchange chromatography and hydrophobic interaction chromatography. The molecular weight of the enzyme was estimated to be approximately 126 kDa by gel filtration and by SDS-PAGE. The purified enzyme had the highest activity for levan (a beta(2-->6)-linked fructan), but also hydrolysed garlic extract, (a beta(2-->1)-linked fructan with beta(2-->6)-linked fructosyl sidechains), 1,1,1-kestose, 1,1-kestose, 1-kestose, inulin (beta(2-->1)-linked fructans) and sucrose at 60, 45, 39, 12, 9 and 3%, respectively, of the activity observed for levan. Melezitose, raffinose and stachyose were not hydrolysed by the enzyme. The fructan beta-fructosidase was inhibited by p-chloromercuribenzoate, EDTA, Fe2+, Cu2+, Zn2+ and Co2+, whereas Mn2+ and Cu2+ had no effect. The sequence of the first 20 N-terminal amino acids was: Ala-Thr-Ser-Ala-Ser-Ser-Ser-Gln-Ile-Ser-Gln-Asn-Asn-Thr-Gln-Thr-Ser-Asp-Val-Val. The enzyme had temperature and pH optima at 25 degrees C and 5.5, respectively. At concentrations of up to 12% NaCl no adverse effect on the enzyme activity was observed.  相似文献   

13.
P. ruminis strain 3 was isolated from the ovine rumen and identified on the basis of comparison of its 16S rRNA gene with GenBank. The bacterium was able to grow on Timothy grass fructan, inulin, sucrose, fructose and glucose as a sole carbon source, reaching absorbance of population in a range of 0.4–1.2. During 1 d the bacteria exhausted 92–97 % of initial dose of saccharides except for inulin (its utilization did not exceed 33 %). The bacterial cell extract catalyzed the degradation of Timothy grass fructan, inulin and sucrose in relation to carbon source present in growth medium. Molecular filtration on Sephadex G-150, polyacrylamide gel electrophoresis combined with zymography technique and TLC was used to identify enzymes responsible for the digestion of sucrose and both polymers of fructose. Two specific endolevanases (EC 3.2.1.65), nonspecific β-fructofuranosidase (EC 3.2.1.80 and/or EC 3.2.1.26) and sucrose phosphorylase (EC 2.4.1.7) were detected in cell-free extract from bacteria grown on Timothy grass fructan.  相似文献   

14.
The yeast Kluyveromyces marxianus var. bulgaricus produced large amounts of extracellular inulinase activity when grown on inulin, sucrose, fructose and glucose as carbon source. This protein has been purified to homogeneity by using successive DEAE-Trisacryl Plus and Superose 6HR 10/30 columns. The purified enzyme showed a relative molecular weight of 57 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 77 kDa by gel filtration in Superose 6 HR 10/30. Analysis by SDS-PAGE showed a unique polypeptide band with Coomassie Blue stain and nondenaturing PAGE of the purified enzyme obtained from media with different carbon sources showed the band, too, when stained for glucose oxidase activity. The optimal hydrolysis temperature for sucrose, raffinose and inulin was 55°C and the optimal pH for sucrose was 4.75. The apparent K m values for sucrose, raffinose and inulin are 4.58, 7.41 and 86.9 mg/ml, respectively. Thin layer chromatography showed that inulinase from K. marxianus var. bulgaricus was capable of hydrolyzing different substrates (sucrose, raffinose and inulin), releasing monosaccharides and oligosaccharides. The results obtained suggest the hypothesis that enzyme production was constitutive. Journal of Industrial Microbiology & Biotechnology (2000) 25, 63–69. Received 17 November 1999/ Accepted in revised form 30 May 2000  相似文献   

15.
Summary The -fructofuranosidase activities of a strain of Clostridium acetobutylicum, selected for its capacity to grow on inulinic substrates, were investigated. When grown on inulin, this strain produced extracellular and intracellular -fructofuranosidases, both of which hydrolysed inulin (inulinase activity) and sucrose (invertase activity). Inulinase activity was higher than invertase activity in the extracellular preparation, the opposite being observed for the cellular preparation. The effects of pH and temperature, substrate specificity and the kinetic constants for inulin and sucrose were studied on both preparations, as well as induction by inulin and repression by glucose and fructose of inulinase and invertase activities. The overall results were consistent with the existence of a least one inulinase, (EC 3.2.1.7), mainly but not entirely released in the extracellular medium, and an invertase (3.2.1.26) localized within the cell.Time course hydrolysis experiments of dalhia inulin and Jerusalem artichoke inulofructans by extracellular inulinase showed that this preparation had a remarkably high specificity for hydrolysis of long chain inulofructans.  相似文献   

16.
Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with beta(2-6) and beta(2-1) linkages, respectively. The probiotic bacterium Lactobacillus johnsonii strain NCC 533 possesses a single fructansucrase gene (open reading frame AAS08734) annotated as a putative levansucrase precursor. However, (13)C nuclear magnetic resonance (NMR) analysis of the fructan product synthesized in situ revealed that this is of the inulin type. The ftf gene of L. johnsonii was cloned and expressed to elucidate its exact identity. The purified L. johnsonii protein was characterized as an inulosucrase enzyme, producing inulin from sucrose, as identified by (13)C NMR analysis. Thin-layer chromatographic analysis of the reaction products showed that InuJ synthesized, besides the inulin polymer, a broad range of fructose oligosaccharides. Maximum InuJ enzyme activity was observed in a pH range of 4.5 to 7.0, decreasing sharply at pH 7.5. InuJ exhibited the highest enzyme activity at 55 degrees C, with a drastic decrease at 60 degrees C. Calcium ions were found to have an important effect on enzyme activity and stability. Kinetic analysis showed that the transfructosylation reaction of the InuJ enzyme does not obey Michaelis-Menten kinetics. The non-Michaelian behavior of InuJ may be attributed to the oligosaccharides that were initially formed in the reaction and which may act as better acceptors than the growing polymer chain. This is only the second example of the isolation and characterization of an inulosucrase enzyme and its inulin (oligosaccharide) product from a Lactobacillus strain. Furthermore, this is the first Lactobacillus strain shown to produce inulin polymer in situ.  相似文献   

17.
An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.  相似文献   

18.
Biochemical properties of inulosucrase from Leuconostoc citreum CW28, a potential biocatalyst for inulin synthesis, were determined in order to select optimal reaction conditions. The hydrolysis reaction was about 3.5 times more efficient than the transferase reaction. It was found that high sucrose concentrations (≈250 g L-1) were required for maximum fructose transferase yields. High molecular weight inulin distributions were obtained with cell associated inulosucrase, while lower size products were associated to the activity of the free enzyme in solution. When using whole cells, mannitol was found as a by-product of the reaction resulting from the reduction of fructose released by sucrose hydrolysis. A 30 L pilot plant synthesis with 250 g L-1 of sucrose was carried out using the cell associated inulosucrase resulting in 76% of the substrate being transformed to inulin.  相似文献   

19.
AIMS: To compare the physiological behaviour of Bifidobacterium infantis ATCC 15697 growing on synthetic oligofructose or its components. METHODS AND RESULTS: The studies were carried out in regulated or non-regulated batch cultures on semi-synthetic media. Differences between the carbohydrate utilization patterns with glucose, fructose, sucrose and fructo-oligosaccharides (FOS) were determined. Glucose was the preferred substrate for growth and biomass production, whereas fructose was the best for lactate and acetate production. With sucrose, biomass production reached the level obtained with glucose, whereas with FOS, more metabolites were produced, as with fructose. In a mixture of FOS, the shorter saccharides were used first and fructose was released in the medium. Fructofuranosidase, an enzyme necessary to hydrolyse FOS, was inducible by fructose. CONCLUSION: Glucose contained in FOS and sucrose might sustain growth and cell production, while fructose might enable the production of major metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY: A better understanding of the bifidogenic nature of oligofructose has been gained.  相似文献   

20.
The industrial production of short-chain fructooligosaccharides (FOS) and inulooligosaccharides is expanding rapidly due to the pharmaceutical importance of these compounds. These compounds, concisely termed prebiotics, have biofunctional properties and hence health benefits if consumed in recommended dosages. Prebiotics can be produced enzymatically from sucrose elongation or via enzymatic hydrolysis of inulin by exoinulinases and endoinulinases acting alone or synergistically. Exoinulinases cleave the non-reducing β-(2, 1) end of inulin-releasing fructose while endoinulinases act on the internal linkages randomly to release inulotrioses (F3), inulotetraoses (F4) and inulopentaoses (F5) as major products. Fructosyltransferases act by cleaving a sucrose molecule and then transferring the liberated fructose molecule to an acceptor molecule such as sucrose or another oligosaccharide to elongate the short-chain fructooligosaccharide. The FOS produced by the action of fructosyltransferases are 1-kestose (GF2), nystose (GF3) and fructofuranosyl nystose (GF4). The production of high yields of oligosaccharides of specific chain length from simple raw materials such as inulin and sucrose is a technical challenge. This paper critically explores recent research trends in the production and application of short-chain oligosaccharides. Inulin and enzyme sources for the production of prebiotics are discussed. The mechanism of FOS chain elongation and also the health benefits associated with prebiotics consumption are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号