首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic changes following eccentric exercise in trained and untrained men   总被引:10,自引:0,他引:10  
The effects of one 45-min bout of high-intensity eccentric exercise (250 W) were studied in four male runners and five untrained men. Plasma creatine kinase (CK) activity in these runners was higher (P less than 0.001) than in the untrained men before exercise and peaked at 207 IU/ml 1 day after exercise, whereas in untrained men the maximum was 2,143 IU/ml 5 days after exercise. Plasma interleukin-1 (IL-1) in the trained men was also higher (P less than 0.001) than in the untrained men before exercise but did not significantly increase after exercise. In the untrained men, IL-1 was significantly elevated 3 h after exercise (P less than 0.001). In the untrained group only, 24-h urines were collected before and after exercise while the men consumed a meat-free diet. Urinary 3-methylhistidine/creatinine in the untrained group rose significantly from 127 mumol/g before exercise to 180 mumol/g 10 days after exercise. The results suggest that in untrained men eccentric exercise leads to a metabolic response indicative of delayed muscle damage. Regularly performed long distance running was associated with chronically elevated plasma IL-1 levels and serum CK activities without acute increases after an eccentric exercise bout.  相似文献   

2.
3.
Red blood cell (RBC) mechanical properties were investigated after swimming exercise in trained and untrained rats. A group of rats was trained for 6 wk (60 min swimming, daily), and another group was kept sedentary. Blood samples were obtained either within 5 min or 24 h after 60 min swimming in both groups. In the untrained rats, the RBC aggregation index decreased to 2.60 +/- 0.4 immediately after exercise from a control value of 6.73 +/- 0.18 (P < 0.01), whereas it increased to 13.13 +/- 0.66 after 24 h (P < 0.01). RBC transit time through 5-microm pores increased to 3.53 +/- 0.16 ms within 5 min after the exercise from a control value of 2.19 +/- 0. 07 ms (P < 0.005). A very significant enhancement (166%) in RBC lipid peroxidation was detected only after 24 h. In the trained group, the alterations in all these parameters were attenuated; there was a slight, transient impairment in RBC deformability (transit time = 2.64 +/- 0.13 ms), and lipid peroxidation was found to be unchanged. These findings suggest that training can significantly limit the hemorheological alterations related to a given bout of exercise. Whether this effect is secondary to the training-induced reduction in the degree of metabolic and/or hormonal perturbation remains to be determined.  相似文献   

4.
The effects of 8 weeks of bicycle endurance training (5 X /week for 30 min) on maximal oxygen uptake capacity (VO2max) during arm and leg ergometry, and on the ultrastructure of an untrained arm muscle (m. deltoideus), and a trained leg muscle (m. vastus lateralis) were studied. With the training, leg-VO2max for bicycling increased by +13%, while the capillary per fiber ratio and the volume density of mitochondria in m. vastus lateralis increased by +15% and +40%, respectively. In contrast, the untrained m. deltoideus showed an unchanged capillary per fiber ratio and a decreased mitochondrial volume density (-17%). Despite this decrease of mitochondrial volume arm-VO2max increased by +9%. It seems unlikely that the observed discrepancy can be explained by cardiovascular adaptations, since arm cranking did not fully tax the cardiovascular system (arm-VO2max/leg-VO2max: 0.74 and 0.71 before and after training, respectively). Thus neither cardiovascular adaptations nor local structural changes in the untrained muscles could explain the increased arm-VO2max. However, the enhanced capacity for lactate clearance after endurance training could be sufficient to account for the larger VO2max during arm cranking. We propose that an increased net oxidation of lactate might be responsible for the increased arm-VO2max found after bicycle endurance training.  相似文献   

5.
The present investigation was undertaken to examine the relationship between plasma potassium (K+) and ventilation (VE) during incremental exercise. Blood lactate (La-) was also measured, and its relationship with VE was similarly examined. Eight endurance-trained triathletes (ET) and eight active but untrained men (UT) performed an incremental cycling test to volitional fatigue. Maximal oxygen uptake (VO2max) and oxygen uptake (VO2) at lactate threshold (LT) were higher (P < 0.05) in ET (VO2max 4.60 +/- 0.10 l/min, LT 2.77 +/- 0.85 l/min) than in UT (VO2max 3.79 +/- 0.11 l/min, LT 1.94 +/- 0.60 l/min). There were significant (P < 0.05) correlations between VE and K+ (UT 0.87, ET 0.77) and between VE and La- (UT 0.88, ET 0.85). In ET compared with UT, VE was lower (P < 0.05) at 330 W, K+ was lower at 300 and 330 W, and La- was lower at all work loads > 90 W. These results suggest that K+ may make an important contribution to the regulation of ventilation during incremental exercise and that endurance training attenuates the K+ response to that exercise.  相似文献   

6.
1. The effect of a dose of naloxone (1 mg.kg-1 b.w.) on peripheral (plasma, atria) and central (hypothalamus, hypophysis) levels of atrial natriuretic peptide (ANP) was investigated in the rat. 2. In control rats, an acute subcutaneous dose of naloxone produced no significant change in plasma ANP, but a decrease (NS) in atrial ANP concentration. 3. In physically conditioned animals, naloxone produced a significant decrease in atrial ANP levels. Receptor sensitivity may thus be involved in this differential response. 4. In hypothalamus and hypophysis, no effect on ANP concentrations was seen after a high dose of naloxone whether in control or in physically conditioned animals, suggesting peripheral and central ANP might be differently regulated, at least after chronic endurance physical training.  相似文献   

7.
8.
The purpose of the present study was to compare themyogenic response of hindlimb muscles in young (14-20 wk of age)and old (>120 wk of age) rats with a single exhaustive bout of heavyresistance weight lifting. [3H]thymidine and[14C]leucine labeling were monitored for up to2 wk after the exercise bout to estimate serial changes in mitoticactivity and the level of amino acid uptake and myosin synthesis.Histological, histochemical, and immunohistochemical[anti-5-bromo-2'-deoxyuridine and myogenic determinationgenes (MyoD)] analyses of whole muscles and analysis ofmuscle-specific gene expression (MyoD) using Western blotting andRT-PCR were performed. Old rats showed significant muscle atrophy and alower exercise capacity than young rats. Exercise-induced muscledamage, as assessed in histological sections, and increases in serumcreatine kinase activity were evident in both young and old exercisedgroups. Mitotic activity was increased in young, but not old, rats 2 days after exercise. There was a biphasic increase in[14C]leucine uptake during the 14 dayspostexercise (peaks at 1-4 and 10 days) in young rats: only thefirst peak was observed in old rats. There was a lower uptake of[14C]leucine in the myosin fraction and animpaired expression of MyoD at the protein (immunohistochemistry andWestern blotting) and mRNA (RT-PCR) levels in old rats throughout thepostexercise period. These results demonstrate a reduced reparativecapability of muscle in response to a single bout of exercise in oldcompared with young rats.

  相似文献   

9.
Plasma growth hormone (GH) measured by immunoassay [immunoassayable GH (IGH)] and by tibial bioassay [bioassayable GH (BGH)] increases in humans in response to exercise. In rats, however, IGH does not change in response to exercise. The objective of this study was to determine the BGH response to an acute exercise bout in rats. The rats ran on a treadmill at a rate of 27 m/min for 15 min, after which plasma and pituitary hormones, including IGH and BGH, and plasma metabolites were measured. Plasma and pituitary IGH were unchanged from control groups after the acute exercise bout, whereas plasma BGH was increased by 300% and pituitary BGH was decreased by 50%. Plasma thyroxine and corticosterone levels were significantly increased after a single exercise bout, but plasma testosterone, 3,5, 3'-triiodothyronine, glucose, lactate, and triglyceride concentrations were unchanged. Given previous results from in situ nerve stimulation studies (Gosselink KL, Grindeland RE, Roy RR, Zhong H, Bigbee AJ, Grossman EJ, and Edgerton VR. J Appl Physiol 84: 1425-1430, 1998), these in vivo results are consistent with the rapid BGH response during exercise being induced by the activation of muscle afferents.  相似文献   

10.
11.
The aim of the study was to examine whether a moderate exercise increases the utilization of fatty acids during the recovery period in obese men. Six healthy obese participated in a randomized crossover investigation, one with exercise and one without exercise. At 8 a. m., the subjects had a standardized breakfast and they rested in a sitting position for 3 hours. The subjects were maintained in the sitting position for 4 additional hours in one session. In a second session, they exercised for 60 min at 50 % of their VO(2) max and then returned to the sitting position for 3 hours. Respiratory exchange ratio (RER) values were calculated by indirect calorimetry. During the resting session, plasma non-esterified fatty acids (NEFA) and glycerol concentrations rose progressively, whereas RER progressively decreased. During the exercise, plasma catecholamines, NEFA, glycerol, growth hormone and cortisol levels and RER increased while insulin decreased. During the recovery, plasma NEFA increased and glycerol decreased. During the first hour of recovery, RER values were lower and fatty acid utilization higher than during the same period of the resting session. The study shows that exercise induces modifications in hormonal factors promoting lipid mobilization and suggests that exercise provide substantial amounts of NEFA for muscle oxidation during recovery from an exercise bout in obese subjects.  相似文献   

12.
The aim of this study was to test the hypothesis that bicycle training may improve the relationship between the global SEMG energy and VO2. We already showed close adjustment of the root mean square (RMS) of the surface electromyogram (SEMG) to the oxygen uptake (VO2) during cycling exercise in untrained subjects. Because in these circumstances an altered neuromuscular transmission which could affect SEMG measurement occurred in untrained individuals only, we searched for differences in the SEMG vs. VO2 relationship between untrained subjects and well-trained cyclists. Each subject first performed an incremental exercise to determine VO2max and the ventilatory threshold, and second a constant-load threshold cycling exercise, continued until exhaustion. SEMG from both vastus lateralis muscles was continuously recorded. RMS was computed. M-Wave was periodically recorded. During incremental exercise: (1) a significant non-linear positive correlation was found between RMS increase and VO2 increase in untrained subjects, whereas the relationship was best fitted by a straight line in trained cyclists; (2) the RMS/VO2 ratio decreased progressively throughout the incremental exercise, its decline being significantly and markedly accentuated in trained cyclists; (3) in untrained subjects, significant M-wave alterations occurred at the end of the trial. These M-wave alterations could explain the non-linear RMS increase in these individuals. During constant-load exercise: (1) after an initial increase, the VO2 ratio decreased progressively to reach a plateau after 2 min of exercise, but no significant inter-group differences were noted; (2) no M-wave changes were measured in the two groups. We concluded that the global SEMG energy recorded from the vastus lateralis muscle is a good estimate of metabolic energy expenditure during incremental cycling exercise only in well-trained cyclists.  相似文献   

13.
14.
15.
1. The effect of a dose of naloxone (1 mg·kg−1 b.w.) on peripheral (plasma, atria) and central (hypothalamus, hypophysis) levels of atrial natriuretic peptide (ANP) was investigated in the rat.2. In control rats, an acute subcutaneous dose of naloxone produced no significant change in plasma ANP, but a decrease (NS) in atrial ANP concentration.3. In physically conditioned animals, naloxone produced a significant decrease in atrial ANP levels. Receptor sensitivity may thus be involved in this differential response.4. In hypothalamus and hypophysis, no effect on ANP concentrations was seen after a high dose of naloxone whether in control or in physically conditioned animals, suggesting peripheral and central ANP might be differently regulated, at least after chronic endurance physical training.  相似文献   

16.
Effects of a single exercise bout on insulin action were compared in men (n = 10) and women (n = 10). On an exercise day, subjects cycled for 90 min at 85% lactate threshold, whereas on a rest (control) day, they remained semirecumbent. The period of exercise, or rest, was followed by a 3-h hyperinsulinemic-euglycemic clamp (30 mU.m(-2).min(-1)) and indirect calorimetry. Glucose kinetics were measured isotopically by using an infusion of [6,6-2H2]glucose. Glucose infusion rate (GIR) during the clamp on the rest day was not different between the genders. However, GIR on the exercise day was significantly lower in men compared with women (P = 0.01). This was mainly due to a significantly lower glucose rate of disappearance in men compared with women (P = 0.05), whereas no differences were observed in the endogenous glucose rate of appearance. Nonprotein respiratory quotient (NPRQ) increased significantly during the clamp from preclamp measurements in men and women on the rest day (P < 0.01). Exercise abolished the increase in NPRQ seen during the clamp on the rest day and tended to decrease NPRQ in men. Our results indicate the following: 1) exercise abolishes the usual increase in NPRQ observed during a hyperinsulinemic-euglycemic clamp in both genders, 2) men exhibit relatively lower whole body insulin action in the 3-4 h after exercise compared with women, and 3) gender differences in insulin action may be explained by a lower glucose rate of disappearance in the men after acute exercise. Together, these data imply gender differences in insulin action postexercise exist in peripheral tissues and not in liver.  相似文献   

17.
The effects on the blood pressure and heart rate responses of different adrenergic stimulants (norepinephrine, sympathomim, epinephrine and isoproterenol) and blocking agents (phenoxybenzamine and propranolol) were studied in control (N=55) and exercising (N=52) albino rats under anaesthesia. The test rats exercised by regular swimming for 10-14 weeks. Alpha stimulation and beta blocking produced smaller responses while alpha blocking and beta stimulation were followed by greater changes after training as compared with the control animals. The assumption of a modified adrenergic receptor sensitivity could not be substantiated by the results; the observations indicate rather a complex change in the autonomous regulation following regular physical exercise.  相似文献   

18.
Hickner, R. C., J. S. Fisher, P. A. Hansen, S. B. Racette,C. M. Mier, M. J. Turner, and J. O. Holloszy. Muscle glycogen accumulation after endurance exercise in trained and untrained individuals. J. Appl. Physiol. 83(3):897-903, 1997.Muscle glycogen accumulation was determined in sixtrained cyclists (Trn) and six untrained subjects (UT) at 6 and either48 or 72 h after 2 h of cycling exercise at ~75% peakO2 uptake(O2 peak), which terminated with five 1-min sprints. Subjects ate 10 gcarbohydrate · kg1 · day1for 48-72 h postexercise. Muscle glycogen accumulation averaged 71 ± 9 (SE) mmol/kg (Trn) and 31 ± 9 mmol/kg (UT) during the first 6 h postexercise (P < 0.01) and 79 ± 22 mmol/kg (Trn) and 60 ± 9 mmol/kg (UT) between 6 and 48 or 72 h postexercise (not significant). Muscle glycogenconcentration was 164 ± 21 mmol/kg (Trn) and 99 ± 16 mmol/kg(UT) 48-72 h postexercise (P < 0.05). Muscle GLUT-4 content immediately postexercise was threefoldhigher in Trn than in UT (P < 0.05)and correlated with glycogen accumulation rates (r = 0.66, P < 0.05). Glycogen synthase in theactive I form was 2.5 ± 0.5, 3.3 ± 0.5, and 1.0 ± 0.3 µmol · g1 · min1in Trn at 0, 6, and 48 or 72 h postexercise, respectively;corresponding values were 1.2 ± 0.3, 2.7 ± 0.5, and 1.6 ± 0.3 µmol · g1 · min1in UT (P < 0.05 at 0 h). Plasmainsulin and plasma C-peptide area under the curve were lower in Trnthan in UT over the first 6 h postexercise(P < 0.05). Plasma creatine kinaseconcentrations were 125 ± 25 IU/l (Trn) and 91 ± 9 IU/l (UT)preexercise and 112 ± 14 IU/l (Trn) and 144 ± 22 IU/l(UT; P < 0.05 vs.preexercise) at 48-72 h postexercise (normal: 30-200 IU/l).We conclude that endurance exercise training results in an increasedability to accumulate muscle glycogen after exercise.

  相似文献   

19.
Endurance training increases muscle content of glucose transporter proteins (GLUT-4) but decreases glucose utilization during exercise at a given absolute submaximal intensity. We hypothesized that glucose uptake might be higher in trained vs. untrained muscle during heavy exercise in the glycogen-depleted state. Eight untrained subjects endurance trained one thigh for 3 wk using a knee-extensor ergometer. The subjects then performed two-legged glycogen-depleting exercise and consumed a carbohydrate-free meal thereafter to keep muscle glycogen concentration low. The next morning, subjects performed dynamic knee extensions with both thighs simultaneously at 60, 80, and until exhaustion at 100% of each thigh's peak workload. Glucose uptake was similar in both thighs during exercise at 60% of thigh peak workload. At the end of 80 and at 100% of peak workload, glucose uptake was on average 33 and 22% higher, respectively, in trained compared with untrained muscle (P < 0.05). Training increased the muscle content of GLUT-4 by 66% (P < 0. 05). At exhaustion, glucose extraction correlated significantly (r = 0.61) with total muscle GLUT-4 protein. Thus, when working at a high load with low glycogen concentrations, muscle glucose uptake is significantly higher in trained than in untrained muscle. This may be due to the higher GLUT-4 protein concentration in trained muscle.  相似文献   

20.
The effects of carbohydrate and fat intake on exercise-induced fatigue was investigated in 30 untrained--(VO2max of 40.6 +/- 2.7 ml X kg-1 X min-1) and 24 trained-subjects (VO2max of 52.3 +/- 2.7 ml X kg-1 X min-1) performing a 34 km march with a 25 kg backpack. Marching time was 8 1/2 h and 6 1/3 h in the untrained and trained-subjects respectively. The subjects were divided into 3 dietary groups. One group had free access to sugar cubes, the second group was offered almonds and the third one served as a control. Triglyceride levels decreased by 65 mg X dl-1 in untrained, and by 115 mg X dl-1 in trained subjects, while blood glucose remained at normal levels. In the untrained subjects, ingestion of almonds delayed the subjective sensation of exhaustion, while 50% of the controls and the sugar consuming subjects complained of exhaustion. The data suggest that ingestion of food containing fat delays exercise induced exhaustion or fatigue to a greater extent than does carbohydrate ingestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号