首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
N-methyl-D-aspartic acid receptor-dependent long term potentiation (LTP), a model of memory formation, requires Ca2+·calmodulin-dependent protein kinase II (αCaMKII) activity and Thr286 autophosphorylation via both global and local Ca2+ signaling, but the mechanisms of signal transduction are not understood. We tested the hypothesis that the Ca2+-binding activator protein calmodulin (CaM) is the primary decoder of Ca2+ signals, thereby determining the output, e.g. LTP. Thus, we investigated the function of CaM mutants, deficient in Ca2+ binding at sites 1 and 2 of the N-terminal lobe or sites 3 and 4 of the C-terminal CaM lobe, in the activation of αCaMKII. Occupancy of CaM Ca2+ binding sites 1, 3, and 4 is necessary and sufficient for full activation. Moreover, the N- and C-terminal CaM lobes have distinct functions. Ca2+ binding to N lobe Ca2+ binding site 1 increases the turnover rate of the enzyme 5-fold, whereas the C lobe plays a dual role; it is required for full activity, but in addition, via Ca2+ binding site 3, it stabilizes ATP binding to αCaMKII 4-fold. Thr286 autophosphorylation is also dependent on Ca2+ binding sites on both the N and the C lobes of CaM. As the CaM C lobe sites are populated by low amplitude/low frequency (global) Ca2+ signals, but occupancy of N lobe site 1 and thus activation of αCaMKII requires high amplitude/high frequency (local) Ca2+ signals, lobe-specific sensing of Ca2+-signaling patterns by CaM is proposed to explain the requirement for both global and local Ca2+ signaling in the induction of LTP via αCaMKII.  相似文献   

2.
Calmodulin (CaM) is a major Ca2+ binding protein involved in two opposing processes of synaptic plasticity of CA1 pyramidal neurons: long-term potentiation (LTP) and depression (LTD). The N- and C-terminal lobes of CaM bind to its target separately but cooperatively and introduce complex dynamics that cannot be well understood by experimental measurement. Using a detailed stochastic model constructed upon experimental data, we have studied the interaction between CaM and Ca2+-CaM-dependent protein kinase II (CaMKII), a key enzyme underlying LTP. The model suggests that the accelerated binding of one lobe of CaM to CaMKII, when the opposing lobe is already bound to CaMKII, is a critical determinant of the cooperative interaction between Ca2+, CaM, and CaMKII. The model indicates that the target-bound Ca2+ free N-lobe has an extended lifetime and may regulate the Ca2+ response of CaMKII during LTP induction. The model also reveals multiple kinetic pathways which have not been previously predicted for CaM-dissociation from CaMKII.  相似文献   

3.
Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.  相似文献   

4.
An increasing number of ion channels have been found to be regulated by the direct binding of calmodulin (CaM), but its structural features are mostly unknown. Previously, we identified the Ca(2+)-dependent and -independent interactions of CaM to the voltage-gated sodium channel via an IQ-motif sequence. In this study we used the trypsin-digested CaM fragments (TR(1)C and TR(2)C) to analyze the binding of Ca(2+)-CaM or Ca(2+)-free (apo) CaM with a sodium channel-derived IQ-motif peptide (NaIQ). Circular dichroic spectra showed that NaIQ peptide enhanced alpha-helicity of the CaM C-terminal lobe, but not that of the CaM N-terminal lobe in the absence of Ca(2+), whereas NaIQ enhanced the alpha-helicity of both the N- and C-terminal lobes in the presence of Ca(2+). Furthermore, the competitive binding experiment demonstrated that Ca(2+)-dependent CaM binding of target peptides (MLCKp or melittin) with CaM was markedly suppressed by NaIQ. The results suggest that IQ-motif sequences contribute to prevent target proteins from activation at low Ca(2+) concentrations and may explain a regulatory mechanism why highly Ca(2+)-sensitive target proteins are not activated in the cytoplasm.  相似文献   

5.
The regulation of Ca(V)2.1 (P/Q-type) channels by calmodulin (CaM) showcases the powerful Ca(2+) decoding capabilities of CaM in complex with the family of Ca(V)1-2 Ca(2+) channels. Throughout this family, CaM does not simply exert a binary on/off regulatory effect; rather, Ca(2+) binding to either the C- or N-terminal lobe of CaM alone can selectively trigger a distinct form of channel modulation. Additionally, Ca(2+) binding to the C-terminal lobe triggers regulation that appears preferentially responsive to local Ca(2+) influx through the channel to which CaM is attached (local Ca(2+) preference), whereas Ca(2+) binding to the N-terminal lobe triggers modulation that favors activation via Ca(2+) entry through channels at a distance (global Ca(2+) preference). Ca(V)2.1 channels fully exemplify these features; Ca(2+) binding to the C-terminal lobe induces Ca(2+)-dependent facilitation of opening (CDF), whereas the N-terminal lobe yields Ca(2+)-dependent inactivation of opening (CDI). In mitigation of these interesting indications, support for this local/global Ca(2+) selectivity has been based upon indirect inferences from macroscopic recordings of numerous channels. Nagging uncertainty has also remained as to whether CDF represents a relief of basal inhibition of channel open probability (P(o)) in the presence of external Ca(2+), or an actual enhancement of P(o) over a normal baseline seen with Ba(2+) as the charge carrier. To address these issues, we undertake the first extensive single-channel analysis of Ca(V)2.1 channels with Ca(2+) as charge carrier. A key outcome is that CDF persists at this level, while CDI is entirely lacking. This result directly upholds the local/global Ca(2+) preference of the lobes of CaM, because only a local (but not global) Ca(2+) signal is here present. Furthermore, direct single-channel determinations of P(o) and kinetic simulations demonstrate that CDF represents a genuine enhancement of open probability, without appreciable change of activation kinetics. This enhanced-opening mechanism suggests that the CDF evoked during action-potential trains would produce not only larger, but longer-lasting Ca(2+) responses, an outcome with potential ramifications for short-term synaptic plasticity.  相似文献   

6.
Changes in activity-dependent calcium flux through voltage-gated calcium channels (Ca(V)s) drive two self-regulatory calcium-dependent feedback processes that require interaction between Ca(2+)/calmodulin (Ca(2+)/CaM) and a Ca(V) channel consensus isoleucine-glutamine (IQ) motif: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Here, we report the high-resolution structure of the Ca(2+)/CaM-Ca(V)1.2 IQ domain complex. The IQ domain engages hydrophobic pockets in the N-terminal and C-terminal Ca(2+)/CaM lobes through sets of conserved 'aromatic anchors.' Ca(2+)/N lobe adopts two conformations that suggest inherent conformational plasticity at the Ca(2+)/N lobe-IQ domain interface. Titration calorimetry experiments reveal competition between the lobes for IQ domain sites. Electrophysiological examination of Ca(2+)/N lobe aromatic anchors uncovers their role in Ca(V)1.2 CDF. Together, our data suggest that Ca(V) subtype differences in CDI and CDF are tuned by changes in IQ domain anchoring positions and establish a framework for understanding CaM lobe-specific regulation of Ca(V)s.  相似文献   

7.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family   总被引:3,自引:0,他引:3  
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.  相似文献   

8.
The type IIb class of plant Ca(2+)-ATPases contains a unique N-terminal extension that encompasses a calmodulin (CaM) binding domain and an auto-inhibitory domain. Binding of Ca(2+)-CaM to this region can release auto-inhibition and activates the calcium pump. Using multidimensional NMR spectroscopy, we have determined the solution structure of the complex of a plant CaM isoform with the CaM-binding domain of the well characterized Ca(2+)-ATPase BCA1 from cauliflower. The complex has a rather elongated structure in which the two lobes of CaM do not contact each other. The anchor residues Trp-23 and Ile-40 form a 1-8-18 interaction motif. Binding of Ca(2+)-CaM gives rise to the induction of two helical parts in this unique target peptide. The two helical portions are connected by a highly positively charged bend region, which represents a relatively fixed angle and positions the two lobes of CaM in an orientation that has not been seen before in any complex structure of calmodulin. The behavior of the complex was further characterized by heteronuclear NMR dynamics measurements of the isotope-labeled protein and peptide. These data suggest a unique calcium-driven activation mechanism for BCA1 and other plant Ca(2+)-ATPases that may also explain the action of calcium-CaM on some other target enzymes. Moreover, CaM activation of plant Ca(2+)-ATPases seems to occur in an organelle-specific manner.  相似文献   

9.
Thermodynamic parameters of interactions of calcium-saturated calmodulin (Ca(2+)-CaM) with melittin, C-terminal fragment of melittin, or peptides derived from the CaM binding regions of constitutive (cerebellar) nitric-oxide synthase, cyclic nucleotide phosphodiesterase, calmodulin-dependent protein kinase I, and caldesmon (CaD-A, CaD-A*) have been measured using isothermal titration calorimetry. The peptides could be separated into two groups according to the change in heat capacity upon complex formation, DeltaC(p). The calmodulin-dependent protein kinase I, constitutive (cerebellar) nitric-oxide synthase, and melittin peptides have DeltaC(p) values clustered around -3.2 kJ.mol(-1).K(-1), consistent with the formation of a globular CaM-peptide complex in the canonical fashion. In contrast, phosphodiesterase, the C-terminal fragment of melittin, CaD-A, and CaD-A* have DeltaC(p) values clustered around -1.6 kJ.mol(-1).K(-1), indicative of interactions between the peptide and mostly one lobe of CaM, probably the C-terminal lobe. It is also shown that the interactions for different peptides with Ca(2+)-CaM can be either enthalpically or entropically driven. The difference in the energetics of peptide/Ca(2+)-CaM complex formation appears to be due to the coupling of peptide/Ca(2+)-CaM complex formation to the coil-helix transition of the peptide. The binding of a helical peptide to Ca(2+)-CaM is dominated by favorable entropic effects, which are probably mostly due to hydrophobic interactions between nonpolar groups of the peptide and Ca(2+)-CaM. Applications of these findings to the design of potential CaM inhibitors are discussed.  相似文献   

10.
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.  相似文献   

11.
Synapses may undergo long-term increases or decreases in synaptic strength dependent on critical differences in the timing between pre-and postsynaptic activity. Such spike-timing-dependent plasticity (STDP) follows rules that govern how patterns of neural activity induce changes in synaptic strength. Synaptic plasticity in the dorsal cochlear nucleus (DCN) follows Hebbian and anti-Hebbian patterns in a cell-specific manner. Here we show that these opposing responses to synaptic activity result from differential expression of two signaling pathways. Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling underlies Hebbian postsynaptic LTP in principal cells. By contrast, in interneurons, a temporally precise anti-Hebbian synaptic spike-timing rule results from the combined effects of postsynaptic CaMKII-dependent LTP and endocannabinoid-dependent presynaptic LTD. Cell specificity in the circuit arises from selective targeting of presynaptic CB1 receptors in different axonal terminals. Hence, pre- and postsynaptic sites of expression determine both the sign and timing requirements of long-term plasticity in interneurons.  相似文献   

12.
Long-term depression of kainate receptor-mediated synaptic transmission   总被引:3,自引:0,他引:3  
Park Y  Jo J  Isaac JT  Cho K 《Neuron》2006,49(1):95-106
Kainate receptors (KARs) have been shown to be involved in hippocampal mossy fiber long-term potentiation (LTP); however, it is not known if KARs are involved in the induction or expression of long-term depression (LTD), the other major form of long-term synaptic plasticity. Here we describe LTD of KAR-mediated synaptic transmission (EPSC(KA) LTD) in perirhinal cortex layer II/III neurons that is distinct from LTD of AMPAR-mediated transmission, which also coexists at the same synapses. Induction of EPSC(KA) LTD requires a rise in postsynaptic Ca(2+) but is independent of NMDARs or T-type voltage-gated Ca(2+) channels; however, it requires synaptic activation of inwardly rectifying KARs and release of Ca(2+) from stores. The synaptic KARs are regulated by tonically activated mGluR5, and expression of EPSC(KA) LTD occurs via a mechanism involving mGluR5, PKC, and PICK1 PDZ domain interactions. Thus, we describe the induction and expression mechanism of a form of synaptic plasticity, EPSC(KA) LTD.  相似文献   

13.
The role of calmodulin as a signal integrator for synaptic plasticity   总被引:12,自引:0,他引:12  
Excitatory synapses in the brain show several forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), which are initiated by increases in intracellular Ca(2+) that are generated through NMDA (N-methyl-D-aspartate) receptors or voltage-sensitive Ca(2+) channels. LTP depends on the coordinated regulation of an ensemble of enzymes, including Ca(2+)/calmodulin-dependent protein kinase II, adenylyl cyclase 1 and 8, and calcineurin, all of which are stimulated by calmodulin, a Ca(2+)-binding protein. In this review, we discuss the hypothesis that calmodulin is a central integrator of synaptic plasticity and that its unique regulatory properties allow the integration of several forms of signal transduction that are required for LTP and LTD.  相似文献   

14.
We used nuclear magnetic resonance data to determine ensembles of conformations representing the structure and dynamics of calmodulin (CaM) in the calcium-bound state (Ca(2+)-CaM) and in the state bound to myosin light chain kinase (CaM-MLCK). These ensembles reveal that the Ca(2+)-CaM state includes a range of structures similar to those present when CaM is bound to MLCK. Detailed analysis of the ensembles demonstrates that correlated motions within the Ca(2+)-CaM state direct the structural fluctuations toward complex-like substates. This phenomenon enables initial ligation of MLCK at the C-terminal domain of CaM and induces a population shift among the substates accessible to the N-terminal domain, thus giving rise to the cooperativity associated with binding. Based on these results and the combination of modern free energy landscape theory with classical allostery models, we suggest that a coupled equilibrium shift mechanism controls the efficient binding of CaM to a wide range of ligands.  相似文献   

15.
Ca(2+)-activated calmodulin (CaM) regulates many target enzymes by docking to an amphiphilic target helix of variable sequence. This study compares the equilibrium Ca2+ binding and Ca2+ dissociation kinetics of CaM complexed to target peptides derived from five different CaM-regulated proteins: phosphorylase kinase. CaM-dependent protein kinase II, skeletal and smooth myosin light chain kinases, and the plasma membrane Ca(2+)-ATPase. The results reveal that different target peptides can tune the Ca2+ binding affinities and kinetics of the two CaM domains over a wide range of Ca2+ concentrations and time scales. The five peptides increase the Ca2+ affinity of the N-terminal regulatory domain from 14- to 350-fold and slow its Ca2+ dissociation kinetics from 60- to 140-fold. Smaller effects are observed for the C-terminal domain, where peptides increase the apparent Ca2+ affinity 8- to 100-fold and slow dissociation kinetics 13- to 132-fold. In full-length skeletal myosin light chain kinase the inter-molecular tuning provided by the isolated target peptide is further modulated by other tuning interactions, resulting in a CaM-protein complex that has a 10-fold lower Ca2+ affinity than the analogous CaM-peptide complex. Unlike the CaM-peptide complexes, Ca2+ dissociation from the protein complex follows monoexponential kinetics in which all four Ca2+ ions dissociate at a rate comparable to the slow rate observed in the peptide complex. The two Ca2+ ions bound to the CaM N-terminal domain are substantially occluded in the CaM-protein complex. Overall, the results indicate that the cellular activation of myosin light chain kinase is likely to be triggered by the binding of free Ca2(2+)-CaM or Ca4(2+)-CaM after a Ca2+ signal has begun and that inactivation of the complex is initiated by a single rate-limiting event, which is proposed to be either the direct dissociation of Ca2+ ions from the bound C-terminal domain or the dissociation of Ca2+ loaded C-terminal domain from skMLCK. The observed target-induced variations in Ca2+ affinities and dissociation rates could serve to tune CaM activation and inactivation for different cellular pathways, and also must counterbalance the variable energetic costs of driving the activating conformational change in different target enzymes.  相似文献   

16.
Edema factor (EF) and CyaA are calmodulin (CaM)-activated adenylyl cyclase exotoxins involved in the pathogenesis of anthrax and whooping cough, respectively. Using spectroscopic, enzyme kinetic and surface plasmon resonance spectroscopy analyses, we show that low Ca(2+) concentrations increase the affinity of CaM for EF and CyaA causing their activation, but higher Ca(2+) concentrations directly inhibit catalysis. Both events occur in a physiologically relevant range of Ca(2+) concentrations. Despite the similarity in Ca(2+) sensitivity, EF and CyaA have substantial differences in CaM binding and activation. CyaA has 100-fold higher affinity for CaM than EF. CaM has N- and C-terminal globular domains, each binding two Ca(2+) ions. CyaA can be fully activated by CaM mutants with one defective C-terminal Ca(2+)-binding site or by either terminal domain of CaM while EF cannot. EF consists of a catalytic core and a helical domain, and both are required for CaM activation of EF. Mutations that decrease the interaction of the helical domain with the catalytic core create an enzyme with higher sensitivity to Ca(2+)-CaM activation. However, CyaA is fully activated by CaM without the domain corresponding to the helical domain of EF.  相似文献   

17.
L Li  MI Stefan  N Le Novère 《PloS one》2012,7(9):e43810
NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors.  相似文献   

18.
Silkis I 《Bio Systems》2000,57(3):187-196
It is pointed out that Ca(2+)-dependent modification rules for NMDA-dependent (NMDA-independent) synaptic plasticity in the striatum are similar to those in the neocortex and hippocampus (cerebellum). A unitary postsynaptic mechanism of synaptic modification is proposed. It is based on the assumption that, in diverse central nervous system structures, long-term potentiation/depression (LTP/LTD) of excitatory transmission (depression/potentiation of inhibitory transmission, LTDi/LTPi) is the result of an increasing/decreasing the number of phosphorylated AMPA and NMDA (GABA(A)) receptors. According to the suggested mechanism, Ca(2+)/calmodulin-dependent protein kinase II and protein kinase C, whose activity is positively correlated with Ca(2+) enlargement, together with cAMP-dependent protein kinase A (cGMP-dependent protein kinase G, whose activity is negatively correlated with Ca(2+) rise) mainly phosphorylate ionotropic striatal receptors, if NMDA channels are opened (closed). Therefore, the positive/negative post-tetanic Ca(2+) shift in relation to a previous Ca(2+) rise must cause NMDA-dependent LTP+LTDi/LTD+LTPi or NMDA-independent LTD+LTPi/LTP+LTDi. Dopamine D(1)/D(2) or adenosine A(2A)/A(1) receptor activation must facilitate LTP+LTDi/LTD+LTPi due to an augmenting/lowering PKA activity. Activation of muscarinic M(1)/M(4) receptors must enhance LTP+LTDi/LTD+LTPi as a consequence of an increase/decrease in the activity of protein kinase C/A. The proposed mechanism is in agreement with known experimental data.  相似文献   

19.
The calmodulin (CaM)-binding domain of isoform 4b of the plasma membrane Ca(2+) -ATPase (PMCA) pump is represented by peptide C28. CaM binds to either PMCA or C28 by a mechanism in which the primary anchor residue Trp-1093 binds to the C-terminal lobe of the extended CaM molecule, followed by collapse of CaM with the N-terminal lobe binding to the secondary anchor Phe-1110 (Juranic, N., Atanasova, E., Filoteo, A. G., Macura, S., Prendergast, F. G., Penniston, J. T., and Strehler, E. E. (2010) J. Biol. Chem. 285, 4015-4024). This is a relatively rapid reaction, with an apparent half-time of ~1 s. The dissociation of CaM from PMCA4b or C28 is much slower, with an overall half-time of ~10 min. Using targeted molecular dynamics, we now show that dissociation of Ca(2+)-CaM from C28 may occur by a pathway in which Trp-1093, although deeply embedded in a pocket in the C-terminal lobe of CaM, leaves first. The dissociation begins by relatively rapid release of Trp-1093, followed by very slow release of Phe-1110, removal of C28, and return of CaM to its conformation in the free state. Fluorescence measurements and molecular dynamics calculations concur in showing that this alternative path of release of the PMCA4b CaM-binding domain is quite different from that of binding. The intermediate of dissociation with exposed Trp-1093 has a long lifetime (minutes) and may keep the PMCA primed for activation.  相似文献   

20.
Calcium influx drives two opposing voltage-activated calcium channel (Ca(V)) self-modulatory processes: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Specific Ca(2+)/calmodulin (Ca(2+)/CaM) lobes produce CDI and CDF through interactions with the Ca(V)alpha(1) subunit IQ domain. Curiously, Ca(2+)/CaM lobe modulation polarity appears inverted between Ca(V)1s and Ca(V)2s. Here, we present crystal structures of Ca(V)2.1, Ca(V)2.2, and Ca(V)2.3 Ca(2+)/CaM-IQ domain complexes. All display binding orientations opposite to Ca(V)1.2 with a physical reversal of the CaM lobe positions relative to the IQ alpha-helix. Titration calorimetry reveals lobe competition for a high-affinity site common to Ca(V)1 and Ca(V)2 IQ domains that is occupied by the CDI lobe in the structures. Electrophysiological experiments demonstrate that the N-terminal Ca(V)2 Ca(2+)/C-lobe anchors affect CDF. Together, the data unveil the remarkable structural plasticity at the heart of Ca(V) feedback modulation and indicate that Ca(V)1 and Ca(V)2 IQ domains bear a dedicated CDF site that exchanges Ca(2+)/CaM lobe occupants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号