首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Functional interaction between AQP2 and TRPV4 in renal cells   总被引:1,自引:0,他引:1  
We have previously demonstrated that renal cortical collecting duct cells (RCCD(1)), responded to hypotonic stress with a rapid activation of regulatory volume decrease (RVD) mechanisms. This process requires the presence of the water channel AQP2 and calcium influx, opening the question about the molecular identity of this calcium entry path. Since the calcium permeable nonselective cation channel TRPV4 plays a crucial role in the response to mechanical and osmotic perturbations in a wide range of cell types, the aim of this work was to test the hypothesis that the increase in intracellular calcium concentration and the subsequent rapid RVD, only observed in the presence of AQP2, could be due to a specific activation of TRPV4. We evaluated the expression and function of TRPV4 channels and their contribution to RVD in WT-RCCD(1) (not expressing aquaporins) and in AQP2-RCCD(1) (transfected with AQP2) cells. Our results demonstrated that both cell lines endogenously express functional TRPV4, however, a large activation of the channel by hypotonicity only occurs in cells that express AQP2. Blocking of TRPV4 by ruthenium red abolished calcium influx as well as RVD, identifying TRPV4 as a necessary component in volume regulation. Even more, this process is dependent on the translocation of TRPV4 to the plasma membrane. Our data provide evidence of a novel association between TRPV4 and AQP2 that is involved in the activation of TRPV4 by hypotonicity and regulation of cellular response to the osmotic stress, suggesting that both proteins are assembled in a signaling complex that responds to anisosmotic conditions.  相似文献   

2.
3.
The acyl-CoA synthetase 4 (ACSL4), which esterify mainly arachidonic acid (AA) into acyl-CoA, is increased in breast, colon and hepatocellular carcinoma. The transfection of MCF-7 cells with ACSL4 cDNA transforms the cells into a highly aggressive phenotype and controls both lipooxygenase-5 (LOX-5) and cyclooxygenase-2 (COX-2) metabolism of AA, suggesting a causal role of ACSL4 in tumorigenesis. We hypothesized that ACSL4, LOX-5 and COX-2 may constitute potential therapeutic targets for the control of tumor growth. Therefore, the aim of this study was to use a tetracycline Tet-Off system of MCF-7 xenograft model of breast cancer to confirm the effect of ACSL4 overexpression on tumor growth in vivo. We also aim to determine whether a combinatorial inhibition of the ACSL4-LOX-COX-2 pathway affects tumor growth in vivo using a xenograft model based on MDA-MB-231 cells, a highly aggressive breast cancer cell line naturally overexpressing ACSL4. The first novel finding is that stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system of MCF-7 cells resulted in development of growing tumors when injected into nude mice. Tumor xenograft development measured in animals that received doxycycline resulted in tumor growth inhibition. The tumors presented marked nuclear polymorphism, high mitotic index and low expression of estrogen and progesterone receptor. These results demonstrate the transformational capacity of ACSL4 overexpression. We examined the effect of a combination of inhibitors of ACSL4, LOX-5 and COX-2 on MDA-MB-231 tumor xenografts. This treatment markedly reduced tumor growth in doses of these inhibitors that were otherwise ineffective when used alone, indicating a synergistic effect of the compounds. Our results suggest that these enzymes interact functionally and form an integrated system that operates in a concerted manner to regulate tumor growth and consequently may be potential therapeutic targets for the control of proliferation as well as metastatic potential of cancer cells.  相似文献   

4.
To evaluate the direct effect of human cyclooxygenase-2 (hCox-2) on human breast tumor cell proliferation, invasion, and angiogenesis, hCox-2 cDNA was transfected into slow growing, non-metastatic MCF-7 human breast tumor cells that express low levels of Cox-2. Two stable transfectant clones, designated MCF-7/hCox-2 clones 8 and 10, had significantly decreased (P < 0.05) doubling time, with two-fold greater number of cells during exponential growth compared to the MCF-7/vector control. Proliferation of both of the MCF-7/hCox-2 clones was significantly inhibited in a time- and dose-dependent manner by celecoxib. The MCF-7/hCox-2 clones 8 and 10 formed larger and greater numbers of colonies in soft agar than the MCF-7/vector control, with a corresponding increased invasion across an artificial Matrigel basement membrane in response to recombinant human epidermal growth factor (hEGF). The MCF-7/hCox-2 clones 8 and 10 had higher mRNA levels of two splice variants of vascular endothelial growth factor (VEGF), V145 and V165. These results demonstrate that hCox-2 directly increases breast tumor cell proliferation, stimulates invasion across a basement membrane, and induces synthesis of specific heparin binding splice variants of VEGF.  相似文献   

5.
Acyl-CoA synthetase 4 (ACSL4) is implicated in fatty acid metabolism with marked preference for arachidonic acid (AA). ACSL4 plays crucial roles in physiological functions such as steroid synthesis and in pathological processes such as tumorigenesis. However, factors regulating ACSL4 mRNA and/or protein levels are not fully described. Because ACSL4 protein expression requires tyrosine phosphatase activity, in this study we aimed to identify the tyrosine phosphatase involved in ACSL4 expression. NSC87877, a specific inhibitor of the tyrosine phosphatase SHP2, reduced ACSL4 protein levels in ACSL4-rich breast cancer cells and steroidogenic cells. Indeed, overexpression of an active form of SHP2 increased ACSL4 protein levels in MA-10 Leydig steroidogenic cells. SHP2 has to be activated through a cAMP-dependent pathway to exert its effect on ACSL4. The effects could be specifically attributed to SHP2 because knockdown of the phosphatase reduced ACSL4 mRNA and protein levels. Through the action on ACSL4 protein levels, SHP2 affected AA-CoA production and metabolism and, finally, the steroidogenic capacity of MA-10 cells: overexpression (or knockdown) of SHP2 led to increased (or decreased) steroid production. We describe for the first time the involvement of SHP2 activity in the regulation of the expression of the fatty acid-metabolizing enzyme ACSL4.  相似文献   

6.
Neurofilament heavy polypeptide (NEFH) has recently been identified as a candidate DNA hypermethylated gene within the functional breast cancer hypermethylome. NEFH exists in a complex with neurofilament medium polypeptide (NEFM) and neurofilament light polypeptide (NEFL) to form neurofilaments, which are structural components of the cytoskeleton in mature neurons. Recent studies reported the deregulation of these proteins in several malignancies, suggesting that neurofilaments may have a role in other cell types as well. Using a comprehensive approach, we studied the epigenetic inactivation of neurofilament genes in breast cancer and the functional significance of this event. We report that DNA methylation-associated silencing of NEFH, NEFL, and NEFM in breast cancer is frequent, cancer-specific, and correlates with clinical features of disease progression. DNA methylation-mediated inactivation of these genes occurs also in multiple other cancer histologies including pancreas, gastric, and colon. Restoration of NEFH function, the major subunit of the neurofilament complex, reduces proliferation and growth of breast cancer cells and arrests them in Go/G1 phase of the cell cycle along with a reduction in migration and invasion. These findings suggest that DNA methylation-mediated silencing of the neurofilament genes NEFH, NEFM, and NEFL are frequent events that may contribute to the progression of breast cancer and possibly other malignancies.  相似文献   

7.

Background  

This study describes the functional interaction between the putative Ca2+ channel TRP4 and the cystic fibrosis transmembrane conductance regulator, CFTR, in mouse aorta endothelium (MAEC).  相似文献   

8.
Arachidonic acid and its lypoxygenated metabolites play a fundamental role in the hormonal regulation of steroidogenesis. Reduction in the expression of the mitochondrial acyl-CoA thioesterase (MTE-I) by antisense or small interfering RNA (siRNA) and of the arachidonic acid-preferring acyl-CoA synthetase (ACS4) by siRNA produced a marked reduction in steroid output of cAMP-stimulated Leydig cells. This effect was blunted by a permeable analog of cholesterol that bypasses the rate-limiting step in steroidogenesis, the transport of cholesterol from the outer to the inner mitochondrial membrane. The inhibition of steroidogenesis was overcome by addition of exogenous arachidonic acid, indicating that the enzymes are part of the mechanism responsible for arachidonic acid release involved in steroidogenesis. Knocking down the expression of MTE-I leads to a significant reduction in the expression of steroidogenic acute regulatory protein. This protein is induced by arachidonic acid and controls the rate-limiting step. Overexpression of MTE-I resulted in an increase in cAMP-induced steroidogenesis. In summary, our results demonstrate a critical role for ACS4 and MTE-I in the hormonal regulation of steroidogenesis as a new pathway of arachidonic acid release different from the classical phospholipase A2 cascade.  相似文献   

9.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O2) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O2, 5 h) using the matrigel assay. To further examine the role of HIF-1α in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1α (DNHIF-1α). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1α. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

10.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O(2)) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O(2), 5 h) using the matrigel assay. To further examine the role of HIF-1alpha in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1alpha (DNHIF-1alpha). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1alpha. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

11.
Basal-like breast cancer (BLBC) and triple-negative breast cancer (TNBC) are aggressive forms of human breast cancer with poor prognosis and limited treatment response. Molecular understanding of BLBC and TNBC biology is instrumental to improve detection and management of these deadly diseases. Tumor suppressors WW domain-containing oxidoreductase (WWOX) and TP53 are altered in BLBC and in TNBC. Nevertheless, the functional interplay between WWOX and p53 is poorly understood. In a recent study by Abdeen and colleagues, it has been demonstrated that WWOX loss drives BLBC formation via deregulating p53 functions. In this review, we highlight important signaling pathways regulated by WWOX and p53 that are related to estrogen receptor signaling, epithelial-to-mesenchymal transition, and genomic instability and how they impact BLBC and TNBC development.  相似文献   

12.
Arachidonoyl-CoA synthetase was solubilized from a particulate fraction of calf brain and human platelets using 1% Nonidet P-40 and 10 mM EDTA. Arachidonoyl-CoA synthetase from both preparations was separated from nonspecific (long chain) acyl-CoA synthetase (EC 6.2.1.3) by chromatography on hydroxylapatite. To further substantiate that the two acyl-CoA synthetases are distinct proteins, we solubilized enzyme from a mutant cell line lacking arachidonoyl-CoA synthetase and from the parent cell line from which it was derived. These preparations were chromatographed on hydroxylapatite, and the mutant showed an absence of the peak identified as arachidonoyl-CoA synthetase in the parent while retaining the peak of nonspecific acyl-CoA synthetase activity. We have also determined the levels of arachidonoyl and nonspecific acyl-CoA synthetase in 13 different human cells and tissues. Arachidonoyl-CoA synthetase is widely distributed and is present in significantly lower concentrations than nonspecific acyl-CoA synthetase only in adipose tissue and liver.  相似文献   

13.
14.
X-linked adrenoleukodystrophy (X-ALD) is characterized biochemically by elevated levels of saturated very long-chain fatty acids (VLCFAs) in plasma and tissues. In X-ALD, peroxisomal very-long-chain acyl-CoA synthetase (VLCS) fails to activate VLCFAs, preventing their degradation via β-oxidation. However, the product of the defective XALD gene (ALDP) is not a VLCS, but rather a peroxisomal membrane protein (PMP). Disruption of either or both of two yeast PMP genes related to the XALD gene did not produce a biochemical phenotype resembling that found in X-ALD fibroblasts. The authors identified a candidate yeast VLCS gene (the FAT1 locus) by its homology to rat liver VLCS. Disruption of this gene decreased VLCS activity, but had no effect on long-chain acyl-CoA synthetase activity. In FAT1-disruption strains, VLCS activity was reduced to 30–40% of wild-type in both a microsome-rich 27,000g supernatant fraction and a peroxisome- and mitochondria-rich pellet fraction of yeast spheroplast homogenates. Separation of the latter organelles by density gradient centrifugation revealed that VLCS activity was peroxisomal and not mitochondrial. VLCS gene-disruption strains had increased cellular VLCFA levels, compared to wild-type yeast. The extent of both the decrease in peroxisomal VLCS activity and the VLCFA accumulation in this yeast model resembles that observed in cells from X-ALD patients. Characterization of the gene(s) responsible for the residual peroxisomal VLCS activity may suggest new therapeutic approaches in X-ALD.  相似文献   

15.
Dowling P  Walsh N  Clynes M 《Proteomics》2008,8(19):4054-4065
Invasion, the penetration of tumour cells into adjacent tissues, is a fundamental characteristic of malignant carcinomas and a first step in the metastatic process. The molecular mechanisms involved in tumour cell invasion are complex, but over the last couple of decades the knowledge base has grown quite considerably and many proteins with important roles in invasion have been identified and characterised. Benign tumours typically are encapsulated, which inhibits their ability to behave in a malignant manner, meaning these tumours do not grow in a location-limited less aggressive manner, do not invade surrounding tissues and do not metastasise. The ability of malignant tumours to invade and metastasise is the major cause of death for cancer patients. A greater insight into the molecular basis of cancer invasion and metastasis will lead to the development of novel therapies and specific panels of biomarkers for use in the treatment and diagnosis/monitoring in many types of metastatic cancer.  相似文献   

16.
17.
Claudin-16 (Paracellin-1) is a transmembrane tight junction (TJ) protein originally described as having a critical role in the re-absorption of magnesium and calcium in the kidney. This study examined expression of Claudin-16 in human breast cells and tissues to identify a possible link between expression and aggressiveness in cells and between Claudin-16 levels and patient prognosis. Insertion of the Claudin-16 gene into MDA-MB-231 human breast cancer cells resulted in cells that were significantly less motile and invasive in behavior, with increased adhesion to matrix. These cells also exhibited significantly increased TJ functionality and "tighter" colony morphology. Moreover, growth rates were reduced in both in vitro and in vivo assays (P < 0.002). Frozen sections from breast cancer primary tumors (matched tumor 124 and background 33) were immuno-stained. RNA was reverse transcribed and analyzed by Q-PCR (standardized using beta-actin, normalized with cytokeratin-19 levels). Levels of expression of Claudin-16 were significantly decreased in node positive tumors compared to negative (P = 0.016). Expression was significantly lower in patients with node positive tumors (P = 0.016) and in those who had died from breast cancer or had general poor prognosis (P < 0.015). Immunohistochemical staining showed decreased expression of Claudin-16 in tumor sections (P < 0.00001). In conclusion, forced expression of Claudin-16 in breast cancer cells resulted in a less aggressive phenotype and reduced in vivo tumor volume. Claudin-16 expression was reduced in human breast cancer, particularly in patients with aggressive tumors and high mortality. This suggests that Claudin-16 plays a role beyond that of an initial metastasis repressor in this cancer type.  相似文献   

18.
Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to their cognate tRNAs. Specific aminoacylation is dictated by a set of recognition elements that mark tRNA molecules as substrates for particular synthetases. Escherichia coli prolyl-tRNA synthetase (ProRS) has previously been shown to recognize specific bases of tRNA(Pro) in both the anticodon domain, which mediate initial complex formation, and in the acceptor stem, which is proximal to the site of catalysis. In this work, we unambiguously define the molecular interaction between E. coli ProRS and the acceptor stem of cognate tRNA(Pro). Oxidative cross-linking studies using 2'-deoxy-8-oxo-7,8-dihydroguanosine-containing proline tRNAs identify a direct interaction between a critical arginine residue (R144) in the active site of E. coli ProRS and the G72 residue in the acceptor stem of tRNA(Pro). Assays conducted with motif 2 loop variants and tRNA mutants wherein specific atomic groups of G72 were deleted, are consistent with a functionally important hydrogen-bonding network between R144 and the major groove of G72. These results taken together with previous studies suggest that breaking this key contact uncouples the allosteric interaction between the anticodon domain and the aminoacylation active site, providing new insights into the communication network that governs the synthetase-tRNA interaction.  相似文献   

19.
Lipoxygenases and cyclooxygenase are key mediators of arachidonic acid metabolism. The eicosanoids metabolites from these oxygynases have been shown to regulate the growth and death of cancer cells. This study determined the level of expression of 5-, 12-, 15-lipoxygenase and cyclooxygenase-2 expression in a cohort of breast cancer patients and their correlation with clinical outcomes. Compared with normal breast tissues, tumour tissues exhibited a significantly higher levels of 12-lipoxygenase and cyclooxygenase-2 (P<0.05), and significantly lower level of 15-lipoxygenase (P=0.05). Lobular carcinomas had a higher level of cyclooxygenase-2 and lower level of 15-lipoxygenase than ductal carcinomas. The lowest level of 15-lipoxygenase was seen in TNM3 and TNM4 tumours and from patients who died of breast cancer. Levels of 12- and 5-lipoxygenases were also particularly high in tumours from patients who died of breast cancer. This study shows that human breast tumours aberrantly express lipoxygenases and cyclooxygenase-2 and that decreased level of 15-lipoxygenase and raised level of cyclooxygenase-2 and 12-lipoxygenase has prognostic value in patients with breast cancer.  相似文献   

20.
Steroid hormones have been reported to indirectly impact mitochondrial functions, attributed to nuclear receptor-induced production of proteins that localize in this cytoplasmic organelle. Here we show high-affinity estrogen receptors in the mitochondria of MCF-7 breast cancer cells and endothelial cells, compatible with classical estrogen receptors ERalpha and ERbeta. We report that in MCF-7, estrogen inhibits UV radiation-induced cytochrome C release, the decrease of the mitochondrial membrane potential, and apoptotic cell death. UV stimulated the formation of mitochondrial reactive oxygen species (mROS), and mROS were essential to inducing mitochondrial events of cell death. mROS mediated the UV activation of c-jun N-terminal kinase (JNK), and protein kinase C (PKC) delta, underlying the subsequent translocation of Bax to the mitochondria where oligomerization was promoted. E2 (estradiol) inhibited all these events, directly acting in mitochondria to inhibit mROS by rapidly up-regulating manganese superoxide dismutase activity. We implicate novel functions of ER in the mitochondria of breast cancer that lead to the survival of the tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号