首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Genomic prediction is based on the accurate estimation of the genomic relationships among and between training animals and selection candidates in order to obtain accurate estimates of the genomic estimated breeding values (GEBV). Various methods have been used to predict GEBV based on population-wide linkage disequilibrium relationships (GIBS) or sometimes on linkage analysis relationships (GLA). Here, we propose a novel method to predict GEBV based on a genomic relationship matrix using runs of homozygosity (GROH). Runs of homozygosity were used to derive probabilities of multi-locus identity by descent chromosome segments. The accuracy and bias of the prediction of GEBV using GROH were compared to those using GIBS and GLA. Comparisons were performed using simulated datasets derived from a random pedigree and a real pedigree of Italian Brown Swiss bulls. The comparison of accuracies of GEBV was also performed on data from 1086 Italian Brown Swiss dairy cattle.

Results

Simulations with various thresholds of minor allele frequency for markers and quantitative trait loci showed that GROH achieved consistently more accurate GEBV (0 to 4% points higher) than GIBS and GLA. The bias of GEBV prediction for simulated data was higher based on the real pedigree than based on a random pedigree. In the analyses with real data, GROH and GLA had similar accuracies. However, GLA achieved a higher accuracy when the prediction was done on the youngest animals. The GIBS matrices calculated with and without standardized marker genotypes resulted in similar accuracies.

Conclusions

The present study proposes GROH as a novel method to estimate genomic relationship matrices and predict GEBV based on runs of homozygosity and shows that it can result in higher or similar accuracies of GEBV prediction than GLA, except for the real data analysis with validation of young animals. Compared to GIBS, GROH resulted in more accurate GEBV predictions.  相似文献   

2.
ABSTRACT: BACKGROUND: Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are present in an individual due to parents transmitting identical haplotypes to their offspring. The extent and frequency of ROHs may inform on the ancestry of an individual and its population. Here we use high density (n = 777,962) bi-allelic SNPs in a range of cattle breed samples to correlate ROH with the pedigree-based inbreeding coefficients and to validate subsequent analyses using 54,001 SNP genotypes. This study provides a first testing of the inference drawn from ROH through comparison with estimates of inbreeding from calculations based on the detailed pedigree data available for several breeds. RESULTS: All animals genotyped on the HD panel displayed at least one ROH that was between 1--5 Mb in length with certain regions of the genome more likely to be involved in a ROH than others. Strong correlations (r = 0.75, p < 0.0001) existed between the pedigree-based inbreeding coefficient and a statistic based on sum of ROH of length > 0.5 KB and suggests that in the absence of an animal's pedigree data, the extent of a genome under ROH may be used to infer aspects of recent population history even from relatively few samples. CONCLUSIONS: Our findings suggest that ROH are frequent across all breeds but differing patterns of ROH length and burden illustrate variations in breed origins and recent management.  相似文献   

3.
4.
In the local breeds with small population size, one of the most important problems is the increase of inbreeding coefficient (F). High levels of inbreeding lead to reduced genetic diversity and inbreeding depression. The availability of high-density single nucleotide polymorphism (SNP) arrays has facilitated the quantification of F by genomic markers in farm animals. Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes and represent an estimate of the degree of autozygosity at genome-wide level. The current study aims to quantify the genomic F derived from ROH (FROH) in three local dairy cattle breeds. FROH values were compared with F estimated from the genomic relationship matrix (FGRM), based on the difference between observed v. expected number of homozygous genotypes (FHOM) and the genomic homozygosity of individual i (FMOL i). The molecular coancestry coefficient (fMOL ij) between individuals i and j was also estimated. Individuals of Cinisara (71), Modicana (72) and Reggiana (168) were genotyped with the 50K v2 Illumina BeadChip. Genotypes from 96 animals of Italian Holstein cattle breed were also included in the analysis. We used a definition of ROH as tracts of homozygous genotypes that were >4 Mb. Among breeds, 3661 ROH were identified. Modicana showed the highest mean number of ROH per individual and the highest value of FROH, whereas Reggiana showed the lowest ones. Differences among breeds existed for the ROH lengths. The individuals of Italian Holstein showed high number of short ROH segments, related to ancient consanguinity. Similar results showed the Reggiana with some extreme animals with segments covering 400 Mb and more of genome. Modicana and Cinisara showed similar results between them with the total length of ROH characterized by the presence of large segments. High correlation was found between FHOM and FROH ranged from 0.83 in Reggiana to 0.95 in Cinisara and Modicana. The correlations among FROH and other estimated F coefficients were generally lower ranged from 0.45 (FMOL iFROH) in Cinisara to 0.17 (FGRMFROH) in Modicana. On the basis of our results, recent inbreeding was observed in local breeds, considering that 16 Mb segments are expected to present inbreeding up to three generations ago. Our results showed the necessity of implementing conservation programs to control the rise of inbreeding and coancestry in the three Italian local dairy cattle breeds.  相似文献   

5.
Genome-wide patterns of homozygosity runs and their variation across individuals provide a valuable and often untapped resource for studying human genetic diversity and evolutionary history. Using genotype data at 577,489 autosomal SNPs, we employed a likelihood-based approach to identify runs of homozygosity (ROH) in 1,839 individuals representing 64 worldwide populations, classifying them by length into three classes—short, intermediate, and long—with a model-based clustering algorithm. For each class, the number and total length of ROH per individual show considerable variation across individuals and populations. The total lengths of short and intermediate ROH per individual increase with the distance of a population from East Africa, in agreement with similar patterns previously observed for locus-wise homozygosity and linkage disequilibrium. By contrast, total lengths of long ROH show large interindividual variations that probably reflect recent inbreeding patterns, with higher values occurring more often in populations with known high frequencies of consanguineous unions. Across the genome, distributions of ROH are not uniform, and they have distinctive continental patterns. ROH frequencies across the genome are correlated with local genomic variables such as recombination rate, as well as with signals of recent positive selection. In addition, long ROH are more frequent in genomic regions harboring genes associated with autosomal-dominant diseases than in regions not implicated in Mendelian diseases. These results provide insight into the way in which homozygosity patterns are produced, and they generate baseline homozygosity patterns that can be used to aid homozygosity mapping of genes associated with recessive diseases.  相似文献   

6.
《Genomics》2021,113(3):1407-1415
Genome-wide pattern of runs of homozygosity (ROH) across ovine genome can provide a useful resource for studying diversity and demography history in sheep. We analyzed 50 k SNPs chip data of 2536 animals to identify pattern, distribution and level of ROHs in 68 global sheep populations. A total of 60,301 ROHs were detected in all breeds. The majority of the detected ROHs were <16 Mb and the average total number of ROHs per individual was 23.8 ± 13.8. The ROHs greater than 1 Mb covered on average 8.2% of the sheep autosomes, 1% of which was related to the ROHs with 1–4 Mb of length. The mean sum of ROH length in two-thirds of the populations was less than 250 Mb ranging from 21.7 to near 570 Mb. The level of genomic inbreeding was relatively low. The average of the inbreeding coefficients based on ROH (FROH) was 0.09 ± 0.05. It was rising in a stepwise manner with distance from Southwest Asia and maximum values were detected in North European breeds. A total of 465 ROH hotspots were detected in 25 different autosomes which partially surrounding 257 Refseq genes across the genome. Most of the detected genes were related to growth, body weight, meat production and quality, wool production and pigmentation. In conclusion, our analysis showed that the sheep genome, compared with other livestock species such as cattle and pig, displays low levels of homozygosity and appropriate genetic diversity for selection response and genetic merit gain.  相似文献   

7.
Yang HC  Chang LC  Liang YJ  Lin CH  Wang PL 《PloS one》2012,7(4):e34840
Rheumatoid arthritis (RA) is a chronic inflammatory disorder with a polygenic mode of inheritance. This study examined the hypothesis that runs of homozygosity (ROHs) play a recessive-acting role in the underlying RA genetic mechanism and identified RA-associated ROHs. Ours is the first genome-wide homozygosity association study for RA and characterized the ROH patterns associated with RA in the genomes of 2,000 RA patients and 3,000 normal controls of the Wellcome Trust Case Control Consortium. Genome scans consistently pinpointed two regions within the human major histocompatibility complex region containing RA-associated ROHs. The first region is from 32,451,664 bp to 32,846,093 bp (-log10(p)>22.6591). RA-susceptibility genes, such as HLA-DRB1, are contained in this region. The second region ranges from 32,933,485 bp to 33,585,118 bp (-log10(p)>8.3644) and contains other HLA-DPA1 and HLA-DPB1 genes. These two regions are physically close but are located in different blocks of linkage disequilibrium, and ~40% of the RA patients' genomes carry these ROHs in the two regions. By analyzing homozygote intensities, an ROH that is anchored by the single nucleotide polymorphism rs2027852 and flanked by HLA-DRB6 and HLA-DRB1 was found associated with increased risk for RA. The presence of this risky ROH provides a 62% accuracy to predict RA disease status. An independent genomic dataset from 868 RA patients and 1,194 control subjects of the North American Rheumatoid Arthritis Consortium successfully validated the results obtained using the Wellcome Trust Case Control Consortium data. In conclusion, this genome-wide homozygosity association study provides an alternative to allelic association mapping for the identification of recessive variants responsible for RA. The identified RA-associated ROHs uncover recessive components and missing heritability associated with RA and other autoimmune diseases.  相似文献   

8.
Genomic measures of inbreeding based on identical-by-descent (IBD) segments are increasingly used to measure inbreeding and mostly estimated on SNP arrays and whole-genome sequencing (WGS) data. However, some softwares recurrently used for their estimation assume that genomic positions which have not been genotyped are nonvariant. This might be true for WGS data, but not for reduced genomic representations and can lead to spurious IBD segments estimation. In this project, we simulated the outputs of WGS, two SNP arrays of different sizes and RAD-sequencing for three populations with different sizes and histories. We compare the results of IBD segments estimation with two softwares: runs of homozygosity (ROHs) estimated with PLINK and homozygous-by-descent (HBD) segments estimated with RZooRoH. We demonstrate that to obtain meaningful estimates of inbreeding, RZooRoH requires a SNPs density 11 times smaller compared to PLINK: ranks of inbreeding coefficients were conserved among individuals above 22 SNPs/Mb for PLINK and 2 SNPs/Mb for RZooRoH. We also show that in populations with simple demographic histories, distribution of ROHs and HBD segments are correctly estimated with both SNP arrays and WGS. PLINK correctly estimated distribution of ROHs with SNP densities above 22 SNPs/Mb, while RZooRoH correctly estimated distribution of HBD segments with SNPs densities above 11 SNPs/Mb. However, in a population with a more complex demographic history, RZooRoH resulted in better distribution of IBD segments estimation compared to PLINK even with WGS data. Consequently, we advise researchers to use either methods relying on excess homozygosity averaged across SNPs or model-based HBD segments calling methods for inbreeding estimations.  相似文献   

9.
Genomic regions under high selective pressure present specific runs of homozygosity (ROH), which provide valuable information on the genetic mechanisms underlying the adaptation to environment imposed challenges. In broiler chickens, the adaptation to conventional production systems in tropical environments lead the animals with favorable genotypes to be naturally selected, increasing the frequency of these alleles in the next generations. In this study, ~1400 chickens from a paternal broiler line were genotyped with the 600 K Affymetrix® Axiom® high-density (HD) genotyping array for estimation of linkage disequilibrium (LD), effective population size (Ne), inbreeding and ROH. The average LD between adjacent single nucleotide polymorphisms (SNPs) in all autosomes was 0.37, and the LD decay was higher in microchromosomes followed by intermediate and macrochromosomes. The Ne of the ancestral population was high and declined over time maintaining a sufficient number of animals to keep the inbreeding coefficient of this population at low levels. The ROH analysis revealed genomic regions that harbor genes associated with homeostasis maintenance and immune system mechanisms, which may have been selected in response to heat stress. Our results give a comprehensive insight into the relationship between shared ROH regions and putative regions related to survival and production traits in a paternal broiler line selected for over 20 years. These findings contribute to the understanding of the effects of environmental and artificial selection in shaping the distribution of functional variants in the chicken genome.  相似文献   

10.
11.
Runs of homozygosity (ROH) are widely used as predictors of whole-genome inbreeding levels in cattle. They identify regions that have an unfavorable effect on a phenotype when homozygous, but also identify the genes associated with traits of economic interest present in these regions. Here, the distribution of ROH islands and enriched genes within these regions in four dairy cattle breeds were investigated. Cinisara (71), Modicana (72), Reggiana (168) and Italian Holstein (96) individuals were genotyped using the 50K v2 Illumina BeadChip. The genomic regions most commonly associated with ROHs were identified by selecting the top 1% of the single nucleotide polymorphisms (SNPs) most commonly observed in the ROH of each breed. In total, 11 genomic regions were identified in Cinisara and Italian Holstein, and eight in Modicana and Reggiana, indicating an increased ROH frequency level. Generally, ROH islands differed between breeds. The most homozygous region (>45% of individuals with ROH) was found in Modicana on chromosome 6 within a quantitative trail locus affecting milk fat and protein concentrations. We identified between 126 and 347 genes within ROH islands, which are involved in multiple signaling and signal transduction pathways in a wide variety of biological processes. The gene ontology enrichment provided information on possible molecular functions, biological processes and cellular components under selection related to milk production, reproduction, immune response and resistance/susceptibility to infection and diseases. Thus, scanning the genome for ROH could be an alternative strategy to detect genomic regions and genes related to important economic traits.  相似文献   

12.
Golding GB  Strobeck C 《Genetics》1983,104(3):513-529
The variance of homozygosity for a K-allele model with n partially isolated subpopulations is derived numerically using identity coefficients. The variance of homozygosity within a subpopulation is shown to depend strongly upon the migration rates between subpopulations but is not strongly influenced by the number of alleles possible at a locus. The variance of homozygosity within a subpopulation, given the value of expected homozygosity, is approximately equal to the value of the variance of homozygosity given by Stewart's formula for a single population. If the population is presumed to be panmictic, but is actually subdivided, and the gametes are sampled at random from the total population, the apparent variance of homozygosity depends on the number of alleles possible. With small migration rates and K large, the apparent variance of homozygosity is much smaller than in a single population with the same expected homozygosity. However, when K is small, the variance of homozygosity is approximately given by Stewart's formula. The transient behavior of the variance of homozygosity shows that a large number of generations may be required to approach equilibrium values.  相似文献   

13.
Increased inbreeding is an inevitable consequence of selection in livestock populations. The analysis of high‐density single nucleotide polymorphisms (SNPs) facilitates the identification of long and uninterrupted runs of homozygosity (ROH) that can be used to identify chromosomal regions that are identical by descent. In this work, the distribution of ROH of different lengths in five Italian cattle breeds is described. A total of 4095 bulls from five cattle breeds (2093 Italian Holstein, 749 Italian Brown, 364 Piedmontese, 410 Marchigiana and 479 Italian Simmental) were genotyped at 54K SNP loci. ROH were identified and used to estimate molecular inbreeding coefficients (FROH), which were compared with inbreeding coefficients estimated from pedigree information (FPED) and using the genomic relationship matrix (FGRM). The average number of ROH per animal ranged from 54 ± 7.2 in Piedmontese to 94.6 ± 11.6 in Italian Brown. The highest number of short ROH (related to ancient consanguinity) was found in Piedmontese, followed by Simmental. The Italian Brown and Holstein had a higher proportion of longer ROH distributed across the whole genome, revealing recent inbreeding. The FPED were moderately correlated with FROH > 1 Mb (0.662, 0.700 and 0.669 in Italian Brown, Italian Holstein and Italian Simmental respectively) but poorly correlated with FGRM (0.134, 0.128 and 0.448 for Italian Brown, Italian Holstein and Italian Simmental respectively). The inclusion of ROH > 8 Mb in the inbreeding calculation improved the correlation of FROH with FPED and FGRM. ROH are a direct measure of autozygosity at the DNA level and can overcome approximations and errors resulting from incomplete pedigree data. In populations with high linkage disequilibrium (LD) and recent inbreeding (e.g. Italian Holstein and Italian Brown), a medium‐density marker panel, such as the one used here, may provide a good estimate of inbreeding. However, in populations with low LD and ancient inbreeding, marker density would have to be increased to identify short ROH that are identical by descent more precisely.  相似文献   

14.
15.
Assessments of plant population dynamics in space and time have depended on dated records of fossil pollen synthesized on a subcontinental scale. Genetic analyses of extant populations have revealed spatial relationships that are indicative of past spatial dynamics, but lack an explicit timescale. Synthesis of these data requires genetic analyses from abundant dated fossil material, and this has hitherto been lacking. Fossil pollen is the most abundant material with which to fill this data gap. Here we report genetic analyses of fossil pollen retrieved from Holtjärnen postglacial lake sediment in Sweden and show that plastid DNA is recoverable from Scots Pine and Norway spruce pollen grains that are 100 and 10 000 years old. By sequencing clones from two short plastid PCR products and by using multiple controls we show that the ancient sequences were endogenous to the fossil grains. Comparison of ancient sequences and those obtained from an extant population of Scots pine establishes the first genetic link between extant and fossil samples in this species, providing genetic continuity through time. The finding of one common haplotype present in modern, 100-year old and 10 000-year old samples suggests that it may have persisted near Holtjärnen throughout the postglacial period. This retrieval of ancient DNA from pollen has major implications for plant palaeoecology in conifer species by allowing direct estimates of population dynamics in space and time.  相似文献   

16.
We use the patterns of homozygosity at multiple loci to distinguish between excess homozygosity caused by consanguineous mating and that due to undetected population subdivision (the Wahlund effect). Clarification of the underlying causes of excess homozygosity is of practical importance in explaining the occurrence of recessive genetic disorders and in forensic match probability calculations. We calculated a likelihood surface for two parameters: C, the proportion of the population practicing consanguinity, and theta, the genetic correlation due population subdivision. To illustrate the method, we applied it to multilocus genotypic data of two U.K. Asian populations, one practicing a high frequency of cousin marriage, and another in which caste endogamy was suspected. The method was able to successfully distinguish the different patterns of relatedness. The method also returned accurate estimates of C and theta using simulated data sets. We show how our method can be extended to allow for degrees of inbreeding closer than cousin unions, including selfing. With closer inbreeding, the relatedness of recent ancestors beyond the parents becomes an issue.  相似文献   

17.
金建华 《生态学报》2005,25(4):676-681
红树科植物化石种类有红树属Rhizophora、秋茄属K andelia、角果木属Ceriops和木榄属Bruguiera等4属,主要分布于亚洲、欧洲、非洲、大洋洲和美洲的古新世至全新世地层中。红树科植物化石记录显示:该科植物很可能于古新世至始新世早期起源于环特提斯海沿岸,中始新世开始从这一起源中心迅速向世界其它地方包括亚洲、欧洲、非洲、大洋洲和美洲等地扩散;渐新世在上述地区继续这一扩散历程,但在欧洲的化石记录消失;中新世时在亚洲、非洲、大洋洲和美洲达到了极盛期;上新世开始分布范围有所缩小,更新世则进一步缩小;一直到全新世才又重新繁盛起来。红树科植物的这一分布格局和地史演变是与地质时期大陆漂移、洋底扩张、第四纪冰川活动、古气候和古地理的变迁紧密相连的  相似文献   

18.
The rough periwinkle, Littorina saxatilis, is a model system for studying parallel ecological speciation in microparapatry. Phenotypically parallel wave‐adapted and crab‐adapted ecotypes that hybridize within the middle shore are replicated along the northwestern coast of Spain and have likely arisen from two separate glacial refugia. We tested whether greater geographic separation corresponding to reduced opportunity for contemporary or historical gene flow between parallel ecotypes resulted in less parallel genomic divergence. We sequenced double‐digested restriction‐associated DNA (ddRAD) libraries from individual snails from upper, mid, and low intertidal levels of three separate sites colonized from two separate refugia. Outlier analysis of 4256 SNP markers identified 34.4% sharing of divergent loci between two geographically close sites; however, these sites each shared only 9.9%–15.1% of their divergent loci with a third more‐distant site. STRUCTURE analysis revealed that genotypes from only three of 166 phenotypically intermediate mid‐shore individuals appeared to result from recent hybridization, suggesting that hybrids cannot be reliably identified using shell traits. Hierarchical AMOVA indicated that the primary source of genomic differentiation was geographic separation, but also revealed greater similarity of the same ecotype across the two geographically close sites than previously estimated with dominant markers. These results from a model system for ecological speciation suggest that genomic parallelism is affected by the opportunity for historical or contemporary gene flow between populations.  相似文献   

19.
The most diverged avian hybrid that has been documented (Numida meleagris × Penelope superciliaris) was reported in 1957. This identification has yet to be confirmed, and like most contemporary studies of hybridization, the identification was based on phenotype, which can be misleading. In this study, we sequenced the specimen in question and performed analyses to validate the specimen's parentage. We extracted DNA from the specimen in a dedicated ancient DNA facility and performed whole-genome short-read sequencing. We used BLAST to find Galliformes sequences similar to the hybrid specimen reads. We found that the proportion of BLAST hits mapped overwhelmingly to two species, N. meleagris and Gallus gallus. Additionally, we constructed phylogenies using avian orthologs and parsed the species placed as sister to the hybrid. Again, the hybrid specimen was placed as a sister to N. meleagris and G. gallus. Despite not being a hybrid between N. meleagris and P. superciliaris, the hybrid still represents the most diverged avian hybrid confirmed with genetic data. In addition to correcting the “record” of the most diverged avian hybrid, these findings support recent assertions that morphological and behavioral-based identifications of avian hybrids can be error-prone. Consequently, this study serves as a cautionary tale to researchers of hybridization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号