首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol accumulation in Niemann-Pick type C disease (NPC) causes increased levels of the amyloid-precursor-protein C-terminal fragments (APP-CTFs) and intracellular amyloid-β peptide (Aβ), the two central molecules in Alzheimer's disease (AD) pathogenesis. We previously reported that cholesterol accumulation in NPC-cells leads to cholesterol-dependent increased APP processing by β-secretase (BACE1) and decreased APP expression at the cell surface (Malnar et al. Biochim Biophys Acta. 1802 (2010) 682-691.). We hypothesized that increased formation of APP-CTFs and Aβ in NPC disease is due to cholesterol-mediated altered endocytic trafficking of APP and/or BACE1. Here, we show that APP endocytosis is prerequisite for enhanced Aβ levels in NPC-cells. Moreover, we observed that NPC cells show cholesterol dependent sequestration and colocalization of APP and BACE1 within enlarged early/recycling endosomes which can lead to increased β-secretase processing of APP. We demonstrated that increased endocytic localization of APP in NPC-cells is likely due to both its increased internalization and its decreased recycling to the cell surface. Our findings suggest that increased cholesterol levels, such as in NPC disease and sporadic AD, may be the upstream effector that drives amyloidogenic APP processing characteristic for Alzheimer's disease by altering endocytic trafficking of APP and BACE1.  相似文献   

2.
The proteolytic processing of amyloid β precursor protein (APP) has long been studied because of its association with the pathology of Alzheimer's disease (AD). The ectodomain of APP is shed by α- or β-secretase cleavage. The remaining membrane bound stub can then undergo regulated intramembrane proteolysis (RIP) by γ-secretase. This cleavage can release amyloid β (Aβ) from the stub left by β-secretase cleavage but also releases the APP intracellular domain (AICD) after α- or β-secretase cleavage. The physiological functions of this proteolytic processing are not well understood. We compare the proteolytic processing of APP to the ligand-dependent RIP of Notch. In this review, we discuss recent evidence suggesting that TAG1 is a functional ligand for APP. The interaction between TAG1 and APP triggers γ-secretase-dependent release of AICD. TAG1, APP and Fe65 colocalise in the neurogenic ventricular zone and in fetal neural progenitor cells in vitro. Experiments in TAG1, APP and Fe65 null mice as well as TAG1 and APP double-null mice demonstrate that TAG1 induces a γ-secretase- and Fe65-dependent suppression of neurogenesis.  相似文献   

3.

Background

The generation of the amyloid-β peptide (Aβ) through the proteolytic processing of the amyloid precursor protein (APP) is a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R) family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing.

Results

Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Aβ production and reduced levels of APP-CTFs. The increased Aβ production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased γ-secretase activity, both of which might contribute to increased Aβ production.

Conclusion

These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Aβ production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting β-secretase and γ-secretase mediated amyloidogenic processing and also by incrementing the activity of γ-secretase.  相似文献   

4.
5.
Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing β- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aβ release. DHA has a typical pleiotropic effect; DHA-mediated Aβ reduction is not the consequence of a single major mechanism but is the result of combined multiple effects.  相似文献   

6.
Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by β-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of β-amyloid (Aβ) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex—which contains presenilin 1 or 2 as the catalytic core—could trigger marked Aβ accumulation.Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions.Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aβ*56 accumulates more quickly in the OE.Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms.  相似文献   

7.
8.
Tamboli IY  Tien NT  Walter J 《Autophagy》2011,7(6):645-646
Recent work from our laboratory demonstrates that the accumulation of sphingolipids (SLs) decreases the capacity of cells to clear potentially amyloidogenic fragments of the amyloid precursor protein (APP) during autophagy. APP is a type I membrane protein and could undergo sequential proteolytic processing by β- and γ-secretase resulting in the generation of the amyloid β-peptide (Aβ). Genetic, molecular and biochemical evidence indicates that the accumulation of toxic Aβ aggregates plays a critical role in the degeneration of neurons during the pathogenesis of Alzheimer disease (AD). Thus, SL storage could promote the accumulation of Ab in endosomal and lysosomal compartments and thereby induce characteristic cytopathological changes of AD.  相似文献   

9.
It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer’s disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1−/− cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer’s disease and supports the role of lipid rafts in these processes.  相似文献   

10.
Alzheimer's disease (AD), the most common age-associated dementing disorder, is pathologically manifested by progressive cognitive dysfunction concomitant with the accumulation of senile plaques consisting of amyloid-β (Aβ) peptide aggregates in the brain of affected individuals. Aβ is derived from a type I transmembrane protein, amyloid precursor protein (APP), by the sequential proteolytic events mediated by β-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Multiple lines of evidence have implicated cholesterol and cholesterol-rich membrane microdomains, termed lipid rafts in the amyloidogenic processing of APP. In this review, we summarize the cell biology of APP, β- and γ-secretases and the data on their association with lipid rafts. Then, we will discuss potential raft targeting signals identified in the secretases and their importance on amyloidogenic processing of APP.  相似文献   

11.
《Autophagy》2013,9(6):645-646
Recent work from our laboratory demonstrates that the accumulation of sphingolipids (SLs) decreases the capacity of cells to clear potentially amyloidogenic fragments of the amyloid precursor protein (APP) during autophagy. APP is a type I membrane protein and could undergo sequential proteolytic processing by β- and γ-secretase resulting in the generation of the amyloid β-peptide (Aβ). Genetic, molecular and biochemical evidence indicates that the accumulation of toxic Aβ aggregates plays a critical role in the degeneration of neurons during the pathogenesis of Alzheimer disease (AD). Thus, SL storage could promote the accumulation of Ab in endosomal and lysosomal compartments and thereby induce characteristic cytopathological changes of AD.  相似文献   

12.
Several prior investigations of Alzheimer's disease (AD) patients have indicated naturally occurring autoantibodies against amyloid-β (Aβ) species are produced. Although many studies have focused on the relative concentrations or binding affinities of autoantibodies against Aβ-related proteins in AD and aging, data regarding their functional properties are limited. It is generally believed that these antibodies act to aid in clearance of Aβ. However, as antibodies which bind to Aβ also typically bind to the parent amyloid precursor protein (APP), we reasoned that certain Aβ-targeting autoantibodies may bind to APP thereby altering its conformation and processing. Here we show for the first time, that naturally occurring Aβ-reactive autoantibodies isolated from AD patients, but not from healthy controls, promote β-secretase activity in cultured cells. Furthermore, using monoclonal antibodies to various regions of Aβ, we found that antibodies generated against the N-terminal region, especially Aβ(1-17) , dose dependently promoted amyloidogenic processing of APP viaβ-secretase activation. Thus, this property of certain autoantibodies in driving Aβ generation could be of etiological importance in the development of sporadic forms of AD. Furthermore, future passive or active anti-Aβ immunotherapies must consider potential off-target effects resulting from antibodies targeting the N-terminus of Aβ, as co-binding to the corresponding region of APP may actually enhance Aβ generation.  相似文献   

13.

Background

Several familial Alzheimer disease (FAD) mutations within the transmembrane region of the amyloid precursor protein (APP) increase the Aβ42/40 ratio without increasing total Aβ production. In the present study, we analyzed the impact of FAD mutations and γ-secretase modulators (GSMs) that alter the Aβ42/40 ratio on APP C-terminus (CT) positioning relative to the membrane, reasoning that changes in the alignment of the APP intramembranous domain and presenilin 1 (PS1) may impact the PS1/γ-secretase cleavage site on APP.

Results

By using a Förster resonance energy transfer (FRET)-based technique, fluorescent lifetime imaging microscopy (FLIM), we show that Aβ42/40 ratio-modulating factors which target either APP substrate or PS1/γ-secretase affect proximity of the APP-CT to the membrane and change PS1 conformation.

Conclusions

Thus, we propose that there is a reciprocal relationship between APP-CT positioning relative to the membrane and PS1 conformation, suggesting that factors that modulate either APP positioning in the membrane or PS1 conformation could be exploited therapeutically.  相似文献   

14.
15.
Inhibition of β-secretase (BACE1) is a key therapeutic approach in Alzheimer's disease (AD), as BACE1 initiates amyloid-β (Aβ) cleavage from the β-amyloid precursor protein (APP). As Aβ reductions in mice lacking one BACE1 allele diverged considerably between studies we investigated the effect of BACE1 knock-out in more detail. With both BACE1 alleles the Swedish mutation (APP23 mice) increased APP processing and shifted it towards the β-secretase pathway as compared with non-mutated APP expressed at a similar level (APP51/16 mice). This effect was much smaller then observed in cell culture. An about 50% decrease in BACE1 enzyme activity resulted in a sub-proportional Aβ reduction with the Swedish mutation (-20%) and even less for non-mutated APP (-16%). In wild-type mice, the Aβ reduction may be even further diminished. Other metabolites of the β-secretase pathway decreased accordingly while the alternative α-secretase pathway increased. Complete BACE1 deletion strongly enhanced these changes. The remaining Aβ signal also described by others can be explained by assay cross-reactivity with other APP metabolites supporting BACE1 as the major β-secretase. Our data indicate that BACE1 is in excess over APP at the cleavage site(s). Alterations in APP expression or substrate properties, therefore, quantitatively change its cleavage and Aβ generation.  相似文献   

16.
β-Amyloid (Aβ) peptides are generated from the successive proteolytic processing of the amyloid precursor protein (APP) by the β-APP cleaving enzyme (BACE or β-secretase) and the γ-secretase complex. Initial cleavage of APP by BACE leads into the amyloidogenic pathway, causing or exacerbating Alzheimer's disease. Therefore, their intracellular traffic can determine how easily and frequently BACE has access to and cleaves APP. Here, we have used polarized Madin-Darby canine kidney (MDCK) cells stably expressing APP and BACE to examine the regulation of their polarized trafficking by retromer, a protein complex previously implicated in their endosome-to-Golgi transport. Our data show that retromer interacts with BACE and regulates its postendocytic sorting in polarized MDCK cells. Depleting retromer, inhibiting retromer function, or preventing BACE interaction with retromer, alters trafficking of BACE, which thereby increases its localization in the early endocytic compartment. As a result, this slows endocytosis of apically localized BACE, promoting its recycling and apical-to-basolateral transcytosis, which increases APP/BACE interaction and subsequent cleavage of APP toward generation and secretion of Aβ peptides.  相似文献   

17.
The intramembrane-cleaving protease γ-secretase catalyzes the last step in the generation of toxic amyloid-β (Aβ) peptides and is a principal therapeutic target in Alzheimer's disease. Both preclinical and clinical studies have demonstrated that inhibition of γ-secretase is associated with prohibitive side effects due to suppression of Notch processing and signaling. Potentially safer are γ-secretase modulators (GSMs), which are small molecules that selectively lower generation of the highly amyloidogenic Aβ42 peptides but spare Notch processing. GSMs with nanomolar potency and favorable pharmacological properties have been described, but the molecular mechanism of GSMs remains uncertain and both the substrate amyloid precursor protein (APP) and subunits of the γ-secretase complex have been proposed as the molecular target of GSMs. We have generated a potent photo-probe based on an acidic GSM that lowers Aβ42 generation with an IC(50) of 290 nM in cellular assays. By combining in vivo photo-crosslinking with affinity purification, we demonstrated that this probe binds the N-terminal fragment of presenilin (PSEN), the catalytic subunit of the γ-secretase complex, in living cells. Labeling was not observed for APP or any of the other γ-secretase subunits. Binding was readily competed by structurally divergent acidic and non-acidic GSMs suggesting a shared mode of action. These findings indicate that potent acidic GSMs target presenilin to modulate the enzymatic activity of the γ-secretase complex.  相似文献   

18.
Abnormal proteolytic processing of amyloid precursor protein (APP) is a pathologic feature of Alzheimer’s disease. Recent studies have demonstrated that serine/threonine phosphorylation specifically at amino-acid residue Thr668 (APP695 numbering) regulates APP processing. In this study, we investigated the possibility that tyrosine phosphorylation of APP regulates APP processing. A tyrosine kinase inhibitor decreased expression of the C83 fragment which is a cleaved product of APP by α-secretase. By overexpressing APP mutant proteins, Tyr687 was found to be the major tyrosine kinase phosphorylation site. Expression of the C83 fragment was decreased in APPY687A-expressing cells relative to APP wild-type (APPWT)-expressing cells, which likely reflects the different cellular localization patterns of these two proteins. Expression of APP intracellular domain (AICD) which is a cleaved product of the C83 fragment by γ-secretase was decreased in C83Y687A-expressing cells. These results suggest that phosphorylation of APP at Tyr687 regulates APP processing by α- and γ-secretases, determining the expression level of AICD.  相似文献   

19.
ABSTRACT: BACKGROUND: Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic A? peptides, causative of neurodegeneration in Alzheimer's disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. RESULTS: In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose-response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of ?-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. CONCLUSIONS: Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and ?-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer's disease.  相似文献   

20.
Zhang M  Deng Y  Luo Y  Zhang S  Zou H  Cai F  Wada K  Song W 《Journal of neurochemistry》2012,120(6):1129-1138
Deposition of amyloid β protein (Aβ) in the brain is the hallmark of Alzheimer's disease (AD) pathogenesis. Beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the β-secretase in vivo essential for generation of Aβ. Previously we demonstrated that BACE1 is ubiquitinated and the degradation of BACE1 is mediated by the ubiquitin-proteasome pathway (UPP). However the mechanism underlying regulation of BACE1 degradation by UPP remains elusive. Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme highly specific to neuron, catalyzing the hydrolysis of ubiquitin conjugates from ubiquitinated substrates. UCHL1 regulates ubiquitin-dependent protein degradation. However, whether UCHL1 is particularly involved in the proteasomal degradation of BACE1 and what is the role of UCHL1 in AD pathogenesis remain elusive. To investigate the effect of UCHL1 on BACE1 degradation, HUCH cells, a UCHL1 stably over-expressed HEK293 cell line, was established. We found that inhibition of UCHL1 significantly increased BACE1 protein level in a time-dependent manner. Half life of BACE1 was reduced in HUCH cells compared with HEK. Over-expression of UCHL1 decreased APP C-terminal fragment C99 and Aβ levels in HUCH cells. Moreover, disruption of Uchl1 gene significantly elevated levels of endogenous BACE1, C99 and Aβ in the Uchl1-null gad mice. These results demonstrated that UCHL1 accelerates BACE1 degradation and affects APP processing and Aβ production. This study suggests that potentiation of UCHL1 might be able to reduce the level of BACE1 and Aβ in brain, which makes it a novel target for AD drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号