首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of mucosal immunity is very important in conferring protection against pathogens that typically invade via mucosal surfaces. Delivery of a vaccine to a mucosal surface optimizes the induction of mucosal immunity. The apparent linked nature of the mucosal immune system allows delivery to any mucosal surface to potentially induce immunity at others. Oral administration is a very straightforward and inexpensive approach to deliver a vaccine to the mucosal lining of the gut. However, vaccines administered by this route are subject to proteolysis in the gastrointestinal tract. Thus, dose levels for protein subunit vaccines are likely to be very high and the antigen may need to be protected from proteolysis for oral delivery to be efficacious. Expression of candidate vaccine antigens in edible recombinant plant material offers an inexpensive means to deliver large doses of vaccines in encapsulated forms. Certain plant tissues can also stably store antigens for extensive periods of time at ambient temperatures, obviating the need for a cold-chain during vaccine storage and distribution, and so further limiting costs. Antigens can be expressed from transgenes stably incorporated into a host plant's nuclear or plastid genome, or from engineered plant viruses infected into plant tissues. Molecular approaches can serve to boost expression levels and target the expressed protein for appropriate post-translational modification. There is a wide range of options for processing plant tissues to allow for oral delivery of a palatable product. Alternatively, the expressed antigen can be enriched or purified prior to formulation in a tablet or capsule for oral delivery. Fusions to carrier molecules can stabilize the expressed antigen, aid in antigen enrichment or purification strategies, and facilitate delivery to effector sites in the gastrointestinal tract. Many antigens have been expressed in plants. In a few cases, vaccine candidates have entered into early phase clinical trials, and in the case of farmed animal vaccines into relevant animal trials.  相似文献   

2.
Oral mucosal immunization is a feasible and economic vaccination strategy. In order to achieve a successful oral mucosal vaccination, antigen delivery to gut immune inductive site and avoidance of oral tolerance induction should be secured. One promising approach is exploring the specific molecules expressed on the apical surfaces of M cells that have potential for antigen uptake and immune stimulation. We previously identified complement 5a receptor (C5aR) expression on human M-like cells and mouse M cells and confirmed its non-redundant role as a target receptor for antigen delivery to M cells using a model antigen. Here, we applied the OmpH ligand, which is capable of targeting the ligand-conjugated antigen to M cells to induce specific mucosal and systemic immunities against the EDIII of dengue virus (DENV). Oral immunization with the EDIII–OmpH efficiently targeted the EDIII to M cells and induced EDIII-specific immune responses comparable to those induced by co-administration of EDIII with cholera toxin (CT). Also, the enhanced responses by OmpH were characterized as Th2-skewed responses. Moreover, oral immunization using EDIII–OmpH did not induce systemic tolerance against EDIII. Collectively, we suggest that OmpH-mediated targeting of antigens to M cells could be used for an efficient oral vaccination against DENV infection.  相似文献   

3.
黏膜是阻止病原入侵的第一道防线,黏膜免疫系统在抵抗感染方面起着至关重要的作用。通过黏膜途径接种疫苗可以同时诱导黏膜和全身免疫反应,因此,理论上针对黏膜的免疫策略是最合理和有效的。但黏膜免疫系统的复杂性和屏障作用造成抗原诱导的免疫应答水平低下,制约了黏膜疫苗的发展。M细胞(Microfoldcells)是黏膜免疫系统所独有的,其具有捕获腔内抗原和启动抗原特异性免疫应答的功能。M细胞摄取抗原的多少直接关系到黏膜疫苗的免疫效力,而利用M细胞配体可将抗原靶向递呈给M细胞,从而实现高效的黏膜免疫应答。靶向M细胞的抗原递送策略及其应用可以提高黏膜免疫应答水平,促进黏膜疫苗的研制。尽管如此,要成功研制安全高效的黏膜疫苗,今后依然有漫长的路要走,这可能有赖于进一步探究M细胞的特性和功能及黏膜免疫机制。  相似文献   

4.
Vaccines designed to prevent mucosal transmission of HIV should establish multiple immune effectors in vaccine recipients, including antibodies which are capable of blocking HIV entry at mucosal epithelial barriers and of preventing initial infection of target cells in the mucosa. Immunological analyses of HIV-resistant humans and data obtained in nonhuman primate vaccine studies indicate that both secretory and serum antibodies may play an important role in protection against mucosal transmission of HIV or SIV, whereas cytotoxic T cells are required for clearance of mucosal infection and prevention of systemic spread. This review summarizes the roles of IgA and IgG antibodies in preventing mucosal infection by other viral and bacterial pathogens, and then discusses the various mechanisms by which antibodies might contribute to protection against HIV at mucosal surfaces. These include prevention of mucosal contact, blocking attachment of virus or infected cells to epithelial cells, interception of virus during transepithelial transport, neutralization of virus in the mucosa, and elimination of locally infected cells through antibody-dependent cell-mediated cytotoxic reactions. The regional nature of mucosal immune responses is reviewed in light of its relevance to HIV vaccine development. We conclude that mucosal immunization should be considered a component of vaccine strategies against HIV.  相似文献   

5.
Almost all vaccinations today are delivered through parenteral routes. Mucosal vaccination offers several benefits over parenteral routes of vaccination, including ease of administration, the possibility of self-administration, elimination of the chance of injection with infected needles, and induction of mucosal as well as systemic immunity. However, mucosal vaccines have to overcome several formidable barriers in the form of significant dilution and dispersion; competition with a myriad of various live replicating bacteria, viruses, inert food and dust particles; enzymatic degradation; and low pH before reaching the target immune cells. It has long been known that vaccination through mucosal membranes requires potent adjuvants to enhance immunogenicity, as well as delivery systems to decrease the rate of dilution and degradation and to target the vaccine to the site of immune function. This review is a summary of current approaches to mucosal vaccination, and it primarily focuses on adjuvants as immunopotentiators and vaccine delivery systems for mucosal vaccines based on protein, DNA or RNA. In this context, we define adjuvants as protein or oligonucleotides with immunopotentiating properties co-administered with pathogen-derived antigens, and vaccine delivery systems as chemical formulations that are more inert and have less immunomodulatory effects than adjuvants, and that protect and deliver the vaccine through the site of administration. Although vaccines can be quite diverse in their composition, including inactivated virus, virus-like particles and inactivated bacteria (which are inert), protein-like vaccines, and non-replicating viral vectors such as poxvirus and adenovirus (which can serve as DNA delivery systems), this review will focus primarily on recombinant protein antigens, plasmid DNA, and alphavirus-based replicon RNA vaccines and delivery systems. This review is not an exhaustive list of all available protein, DNA and RNA vaccines, with related adjuvants and delivery systems, but rather is an attempt to highlight many of the currently available approaches in immunopotentiation of mucosal vaccines.  相似文献   

6.
A successful vaccine triggers the interaction of various cells of the immune system as does a regular immune response. It is thus necessary to introduce the vaccine antigens into an anatomic site where they will contact immune cells. The route of administration is thus critical for the outcome of vaccination. Intramuscular or subcutaneous injections are the most popular. Antigens injected intramuscularly can form persistent precipitates that are dissolved and re-absorbed relatively slowly. If injecting antigens is a quick, easy and reproducible way to vaccination, it requires trained personnel. Alternatives exist, through non-invasive formulations which allow administration by the patient or a third party with no particular expertise. The skin, especially its epidermal layer, is an accessible and competent immune environment and an attractive target for vaccine delivery, through transcutaneous delivery or immunostimulant patches. Mucosal immunization is another strategy: its major rationale is that organisms invade the body via mucosal surfaces. Therefore, local protection at mucosal surface as well as systemic defense is beneficial. Various formulations of mucosal vaccines have been developed, such as the Sabin oral polio vaccine (OPV), rotavirus vaccines, cold-adapted influenza vaccines or vaccine against typhoid fever. Thus we are entering in an era where mucosal and transcutaneous immunisation will play an important role in disease management. However, it has not been so easy to obtain regulatory approval for mucosal or transcutaneous formulations and needle-based vaccines continue to dominate the market.  相似文献   

7.
Bacterial infections in the respiratory tract and middle ear continue to be a major cause of morbidity and mortality despite the availability of antibiotic therapies. To assist development of vaccines for preventing these infections, animal models have been established in rodents. These models have been used effectively to evaluate different vaccination strategies. Our studies have found that for respiratory tract infections caused by Streptococcus pneumoniae, nontypeable Haemophilus influenzae (NTHI) and Moraxella catarrhalis, a primary immunisation targeted to the gut-associated lymphoid tissue was extremely effective in enhancing bacterial clearance. For the gram-negative pathogens, NTHI and M. catarrhalis, this mucosal immunisation was significantly more effective than systemic immunisation, however, for S. pneumoniae systemic immunisation was as effective. A strategy using these models has effectively been used to determine the potential of antigens from each of the pathogens to protect against infection. Antigens that demonstrate significant vaccine potential have been used to investigate delivery systems. One of the major challenges that still exists is to find mechanisms that will effectively deliver protein antigens to mucosal surfaces. Several strategies have been investigated and resulted in varying degrees of success.  相似文献   

8.
杆菌属的芽胞作为益生菌已经应用于人和动物的食品生产和细菌疗法.目前,芽胞作为一种新型的疫苗载体,开始用于破伤风、炭疽等疫苗的研究.与目前的第二代疫苗相比,细菌芽胞热稳定性好,遗传操作方便,是一种理想的疫苗载体.本文就其作为疫苗载体的相关研究进行综述.  相似文献   

9.
Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy.  相似文献   

10.
Oral mucosal immunization can induce protective immunity in both systemic compartments and the mucosa. Successful mucosal immunization depends on Ag delivery to the mucosal immune induction site. The high transcytotic activity of M cells within the mucosa makes these cells attractive targets for mucosal Ag delivery, although it remains unclear whether delivery of Ag to M cells only can guarantee the induction of effective immune responses. In this study, we evaluated the ability of an M cell-targeting ligand with adjuvant activity to induce immunity against ligand-fused Ag. We selected M cell-targeting ligands through biopanning of a phage display library against differentiated in vitro M-like cells and produced the recombinant Ags fused to the selected ligands using the model Ag. One of the selected peptide ligands, Co1, promoted the binding of ligand-fused Ag to mouse Peyer's patch M cells and human M-like cells that had been defined by binding with the M cell-specific and anti-GP2 Abs. In addition, Co1 ligand enhanced the uptake of fused Ag by immunogenic tissue in an ex vivo loop assay and in vivo oral administration experiments. After oral administration, the ligand-fused Ag enhanced immune responses against the fused Ag compared with those of the control Ag without ligand. In addition, this use of the ligand supported a skewed Th2-type immune response against the fused Ag. Collectively, these results suggest that the ligand selected through biopanning against cultured M-like cells could be used as an adjuvant for targeted Ag delivery into the mucosal immune system to enhance immune induction.  相似文献   

11.
Zhang H  Fayad R  Wang X  Quinn D  Qiao L 《Journal of virology》2004,78(19):10249-10257
Mucosal surfaces are the primary portals for human immunodeficiency virus (HIV) transmission. Because systemic immunization, in general, does not induce effective mucosal immune responses, a mucosal HIV vaccine is urgently needed. For this study, we developed papillomavirus pseudoviruses that express HIV-1 Gag. The pseudoviruses are synthetic, nonreplicating viruses, yet they can produce antigens for a long time in the immune system. Here we show that oral immunization of mice by the use of papillomavirus pseudoviruses encoding Gag generated mucosal and systemic Gag-specific cytotoxic T lymphocytes that effectively lysed Gag-expressing target cells. Furthermore, the pseudoviruses generated Gag-specific gamma interferon-producing T cells and serum immunoglobulin G (IgG) and mucosal IgA. In contrast, oral immunization with plasmid DNA encoding HIV-1 Gag did not induce specific immune responses. Importantly, oral immunization with the pseudoviruses induced Gag-specific memory cytotoxic T lymphocytes and protected mice against a rectal mucosal challenge with a recombinant vaccinia virus expressing HIV-1 Gag. Thus, papillomavirus pseudoviruses encoding Gag are a promising mucosal vaccine against AIDS.  相似文献   

12.
黏膜是很多病原体入侵机体的重要入口,黏膜疫苗能诱导产生黏膜保护性免疫应答和系统性免疫应答,阻止病原微生物黏附、入侵和繁殖。但多数候选黏膜疫苗的安全性、稳定性、免疫效力及保护作用还无法达到理想的效果,佐剂或载体的使用改善了黏膜疫苗存在的不足,使黏膜疫苗有了广阔的发展前景。文章综述了提高黏膜免疫的方法及研究进展。  相似文献   

13.
pathogens initiate their infections at the human mucosal surface. Therefore, mucosal vaccination, especially through oral or intranasal administration routes, is highly desired for infectious diseases. Meanwhile, protein-based antigens provide a safer alternative to the whole pathogen or DNA based ones in vaccine development. However, the unique biopharmaceutical hurdles that intranasally or orally delivered protein vaccines need to overcome before they reach the sites of targeting, the relatively low immunogenicity, as well as the low stability of the protein antigens, require thoughtful and fine-tuned mucosal vaccine formulations, including the selection of immunostimulants, the identification of the suitable vaccine delivery system, and the determination of the exact composition and manufacturing conditions. This review aims to provide an up-to-date survey of the protein antigen-based vaccine formulation development, including the usage of immunostimulants and the optimization of vaccine delivery systems for intranasal and oral administrations.  相似文献   

14.
Mucosal immunity and vaccination.   总被引:1,自引:0,他引:1  
The gut mucosal immune system is a critical component of the body's defense against pathogenic organisms, especially those responsible for enteric infections associated with diarrhoeal disease. Attempts to vaccinate against infections of mucosal tissues have been less successful than vaccination against systemic infections, to a large extent reflecting a still incomplete knowledge about the most efficient means for inducing protective local immune responses at these sites. Secretory IgA (SIgA) is the predominating immunoglobulin along mucosal surfaces, and SIgA antibodies generated in gastrointestinal, respiratory or genito-urinary mucosal tissues can confer protection against infections affecting or originating in these sites. An efficacious intestinal SIgA immunity-inducing oral vaccine against cholera has been developed recently, and development of oral vaccines against other enteric infections such as those caused by enterotoxigenic Escherichia coli, Shigella and rotaviruses is in progress as well. Based on the concept of a common mucosal immune system through which activated lymphocytes from the gut can disseminate immunity to other mucosal and glandular tissues, there is currently also much interest in the possibility of developing oral vaccines against infections in the respiratory and urogenital tracts. However, the large and repeated antigen doses often required to achieve a protective immune response still makes this vaccination approach impractical for many purified antigens. There is, therefore, a great need to develop strategies for enhancing delivery of antigen to the mucosal immune system as well as to identify mucosa-active immunostimulating agents (adjuvants). These and other aspects of mucosal immunity in relation to immunization and vaccine development are discussed in this short review article.  相似文献   

15.
Levitz SM  Golenbock DT 《Cell》2012,148(6):1284-1292
Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.  相似文献   

16.
Mucosal immunity and vaccination   总被引:7,自引:0,他引:7  
Abstract The gut mucosal immune system is a critical component of the body's defense against pathogenic organisms, especially those responsible for enteric infections associated with diarrhoeal disease. Attempts to vaccinate against infections of mucosal tissues have been less successful than vaccination against systematic infections, to a large extent reflecting a still incomplete knowledge about the most efficient means for inducing protective local immune responses at these sites. Secretory IgA (SIgA) is the predominating immunoglobulin along mucosal surfaces, and SIgA antibodies generated in gastrointestinal, respiratory or genito-urinary mucosal tissues can confer protection against infections affecting or originating in these sites. An efficacious intestinal SIgA immunity-inducing oral vaccine against cholera has been developed recently, and development of oral vaccines against other enteric infections such as those caused by enterotoxigenic Escherichia coli, Shigella and rotaviruses is in progress as well. Based on the concept of a common mucosal immune system through which activated lymphocytes from the gut can disseminate immunity to other mucosal and glandular tissues, there is currently also much interest in the possibility of developing oral vaccines against infections in the respiratory and urogenital tracts. However, the large and repeated antigen doses often required to achieve a protective immune response still makes this vaccination approach impractical for many purified antigens. There is, therefore, a great need to develop strategies for enhancing delivery of antigen to the mucosal immune system as well as to identify mucosa-active immunostimulating agents (adjuvants). These and other aspects of mucosal immunity in relation to immunization and vaccine development are discussed in this short review article.  相似文献   

17.
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag‐specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant‐based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA‐based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag‐specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine‐keyhole limpet hemocyanin (PC‐KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae . Finally, the possibility that anti‐PC antibodies induced by nasal delivery of pFL plus PC‐KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
  相似文献   

18.
Recent advances in veterinary vaccine adjuvants   总被引:5,自引:0,他引:5  
Next generation veterinary vaccines are going to mainly comprise of either subunit or inactivated bacteria/viruses. These vaccines would require optimal adjuvants and delivery systems to accord long-term protection from infectious diseases in animals. There is an urgent need for the development of new and improved veterinary and human vaccine adjuvants. Adjuvants can be broadly divided into two classes, based on their principal mechanisms of action: vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, ISCOMS and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC). In contrast, immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns, e.g. LPS, MPL and CpG DNA, which activate cells of the innate immune system. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants might enhance this process in animals and humans alike.  相似文献   

19.
Mucosae constitute the major entry for most microbial pathogens but also innocuous antigens derived from ingested food, airborne matter or commensal bacteria. A large and highly specialized innate and adaptative mucosal immune system protects the mucosal surfaces and the body interior from potential injuries from the environment. The mucosal immune system has developed a variety of immune mechanisms to discriminate between non-pathogenic and pathogenic invaders. It is able to maintain tolerance against the plethora of environmental antigens and to induce potent protective immunity to avoid mucosal colonisation and organism invasion by dangerous microbial pathogens. Mucosal immunisation with appropriate antigens and immunostimulatory molecules may induce potent protective immunity against harmful pathogens. Alternatively, mucosally-induced tolerance against auto-antigens or allergens may be generated by mucosal administration of these antigens alone or with immunomodulators potentiating regulatory responses. Here, we review the properties of the mucosal immune system and briefly discuss the advances in the development of mucosal vaccines for protection against infections and for the treatment of inflammatory disorders such as autoimmune diseases or type I allergies.  相似文献   

20.
Recombinant live Mycobacterium bovis BCG vectors (rBCG) induce strong cellular and humoral immune responses against various antigens after either systemic or oral immunization of mice. Cytotoxic T-lymphocyte (CTL) responses may contribute to the control of human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infections whose portal of entry is the gastrointestinal or genital mucosa. In this study, we immunized BALB/c mice with a recombinant BCG SIV nef and observed its behavior in oropharyngeal and target organ lymphoid tissues. The cellular immune responses, particularly the intestinal intraepithelial and systemic CTL responses, were investigated. The results showed that rBCG SIV nef translocated the oropharyngeal mucosa and intestinal epithelium. It diffused to and persisted in target lymphoid organs. Specific SIV Nef peptide proliferative responses and cytokine production were observed. Strong systemic and mucosal CTL responses were induced. In particular, we demonstrated direct specific anti-Nef CTL in intestinal intraepithelial CD8beta+ T cells. These findings provide evidence that orally administered rBCG SIV nef may contribute to local defenses against viral invasion. Therefore, rBCG SIV nef could be a candidate vaccine to protect against SIV infection and may be used to develop an oral rBCG HIV nef vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号