首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a simple but effective approach was proposed for preparing biodegradable plastic foams with a high content of castor oil. First of all, castor oil reacted with maleic anhydride to produce maleated castor oil (MACO) without the aid of any catalyst. Then plastic foams were synthesized through free radical initiated copolymerization between MACO and diluent monomer styrene. With changes in MACO/St ratio and species of curing initiator, mechanical properties of MACO foams can be easily adjusted. In this way, biofoams with comparable compressive stress at 25% strain as commercial polyurethane (PU) foams were prepared, while the content of castor oil can be as high as 61 wt %. The soil burial tests further proved that the castor oil based foams kept the biodegradability of renewable resources despite the fact that some petrol-based components were introduced.  相似文献   

2.
Song Y  Zheng Q 《Bioresource technology》2008,99(16):7665-7671
The aim of the present work has been to study the influence of hydrophobic liquids on the morphology and the properties of thermo-molded plastics based on glycerol-plasticized wheat gluten (WG). While the total amount of castor oil and glycerol was remained constant at 30 wt%, castor oil with various proportions with respect to glycerol was incorporated with WG by mixing at room temperature and the resultant mixtures were thermo-molded at 120 degrees C to prepare sheet samples. Moisture absorption, morphology, dynamic mechanical properties, and tensile properties (Young's modulus, tensile strength and elongation at break) of the plastics were evaluated. Experimental results showed that the physical properties of WG plastic were closely related to glycerol to castor oil ratio. Increasing in castor oil content reduces the moisture absorption markedly, which is accompanied with a significant improvement in tensile strength and Young's modulus. These observations were further confirmed in 24 wt% glycerol-plasticized WG plastics containing 6 wt% silicone oil or polydimethylsiloxane (PDMS) liquid rubber.  相似文献   

3.
Infection with Eimeria sp. results in the activation of multiple facets of the host immune system; the use of phytogenics can modulate the inflammatory response and improve the performance of the challenged animal. The aim of this study was to evaluate the effect of a commercial blend of cashew nut shell liquid (CNSL) and castor oil on the immune response of broilers challenged with coccidiosis. A total of 864 one-day-old male chicks (Cobb 500) were randomly distributed into six treatment groups (8 pens/treatment and 18 chicks/pen) in a three-by-two factorial design with three additives: control (non-additive), 100 ppm of monensin or 0.15% CNSL–castor oil. Challenge status was determined twice at 14 days of age. Unchallenged birds were inoculated by gavage with oocysts sporulated with Eimeria tenella, Eimeria acervulina and Eimeria maxima. Although the positive control (non-additive and challenged) and CNSL–castor oil treatment groups exhibited similar variation in weight gain (ΔBWG) compared to unchallenged birds fed without additives, the variation observed in birds fed diets containing CNSL–castor oil was associated with a higher maintenance requirement and not feed efficiency. In the second week after infection, ΔBWG of the CNSL–castor oil treatment group did not significantly change compared to the other treatment groups. At days 7 and 14 post-challenge, there was a higher excretion of oocysts in the control group, whereas the CNSL–castor oil and monensin groups did not differ. The CNSL–castor oil group exhibited increased gene expression of interferon (IFN), interleukin 6 (IL-6) and tumor necrosis factor (TNF), while the control group exhibited increased expression of cyclooxygenase (COX) and IL-1. The heterophils/lymphocyte ratio was low for the monensin treatment group. The unchallenged birds that received monensin treatment presented higher gene expression of IFN, COX and IL-1 compared to the other treatments, while the CNSL–castor oil group exhibited reduced gene expression, except for TNF. The commercial blend of cashew nut liquid and castor oil modulated the inflammatory response against Eimeria spp. In the absence of the parasite, there was no stimulation of genes involved in the inflammatory response, demonstrating that the blend is an effective tool in specifically modulating the immune system of birds afflicted with coccidiosis.  相似文献   

4.
Castor oil: a vital industrial raw material   总被引:7,自引:0,他引:7  
Even though castor oil is inedible, it has long been an article of commerce. This is, in large measure, due to the versatility of the oil. This article discusses the extraction of castor oil and its refining methods and reviews the industrial applications of the oil. Since castor oil is not edible, it could be substituted in many industrial application areas where edible oils are used. An awareness of the various uses of the oil can be used to make a strong case for an increase in its production as a vital raw material for the chemical industries.  相似文献   

5.
Lin JT  Chen GQ 《New biotechnology》2011,28(2):203-208
Castor oil has many industrial uses. Molecular species of acylglycerols containing monohydroxy, dihydroxy and trihydroxy fatty acids in castor oil have been reported. We report here the identification of acylglycerols containing a triOH18:2 fatty acid in castor oil. The structure of this novel fatty acid was proposed as 11,12,13-trihydroxy-9,14-octadecadienoic acid by the mass spectrometry of the lithiated adducts of acylglycerols in the HPLC fractions of castor oil. The fragmentation pathways of the lithiated adduct of 11,12,13-trihydroxy-9,14-octadecadienoic acid were proposed. We also proposed the biosynthetic pathways of polyhydroxy fatty acids in castor.  相似文献   

6.
Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) is a polyphagous pest that threatens more than 24 species of crop plants including those used for biodiesel production such as Ricinus communis (castor bean), Jatropha curcas (Barbados nut), and Aleurites fordii (tung oil tree). The development and leaf consumption by S. cosmioides reared on leaves of these three species were studied under controlled laboratory conditions. The egg-to-adult development time of S. cosmioides was shortest when reared on castor bean leaves and longest when reared on tung oil tree leaves. Larvae reared on castor bean and Barbados nut leaves had seven instars, whereas those reared on tung oil tree leaves had eight. Females originating from larvae reared on castor bean and Barbados nut leaves showed greater fecundity than did females originating from larvae reared on tung oil tree leaves. Insects fed on castor bean leaves had shorter life spans than those fed on tung oil tree and Barbados nut leaves although the oviposition period did not differ significantly. The intrinsic and finite rates of increase were highest for females reared on castor bean leaves. Total leaf consumption was highest for larvae reared on tung oil tree leaves and lowest for those reared on Barbados nut leaves. We conclude that castor bean is a more appropriate host plant for the development of S. cosmioides than are Barbados nut and tung oil tree.  相似文献   

7.
The ability of an extracellular lipase from Pseudomonas aeruginosa KKA-5 to commence hydrolysis of castor oil in the presence of various metal chlorides, was investigated. Apart from CaCl2 (commonly used for castor oil hydrolysis), AlCl3 (group IIIB), CrCl3 (group VIA) and MgCl2 (group IIA) displayed enhanced hydrolysis capability. Specifically, our statistics show that with respect to time, when Cr3+ was used, hydrolysis of castor oil was four times faster than that of calcium, and 1.6 times faster with regards to Al3+. The chlorides of group VIII and alkali metals had no effect on hydrolysis. Group IV metal chlorides did not enhance lipase activity and inhibited castor oil hydrolysis. The effect of metal ions from other groups on lipase activity is also reported. Received 14 August 1998/ Accepted in revised form 22 October 1998  相似文献   

8.
Ricinoleic acid is a feedstock for nylon-11 (N11) synthesis which is currently obtained from castor (Ricinus communis) oil. Production of this fatty acid in a temperate oilseed crop is of great commercial interest, but the highest reported level in transgenic plant oils is 30%, below the 90% observed in castor and insufficient for commercial exploitation. To identify castor oil-biosynthetic enzymes and inform strategies to improve ricinoleic acid yields, we performed MudPIT analysis on endoplasmic reticulum (ER) purified from developing castor bean endosperm. Candidate enzymes for all steps of triacylglycerol synthesis were identified among 72 proteins in the data set related to complex-lipid metabolism. Previous reported proteomic data from oilseeds had not included any membrane-bound enzyme that might incorporate ricinoleic acid into oil. Analysis of enriched ER enabled determination of which protein isoforms for these enzymes were in developing castor seed. To complement this data, quantitative RT-PCR experiments with castor seed and leaf RNA were performed for orthologues of Arabidopsis oil-synthetic enzymes, determining which were highly expressed in the seed. These data provide important information for further manipulation of ricinoleic acid content in oilseeds and peptide data for future quantification strategies.  相似文献   

9.
Essential and fixed oils have been researched as alternatives to chemical acaricides. The activity of volatile compounds from essential oils (1,8-cineole, citral and eugenol) at 1.0% (w/v) and fixed oil (castor oil) at 0.3% (w/v) dissolved in 2.0% (v/v) dimethyl sulfoxide (DMSO) + 0.2% (w/v) Tween 80® was assessed against Rhipicephalus microplus using immersion tests. 1,8-cineole (29.0%) and castor oil (30.2%) had the highest reproductive inhibition rate. A second experiment was performed to verify the effect of the 1,8-cineole (10.0% w/v) and, or castor oil (0.3% w/v) on tick reproduction using different solubilizing agents. The highest reproductive inhibition was observed for the combination of 1,8-cineole/castor oil (94.1%) and 1,8-cineole in 2.0% (w/v) sodium lauryl ether sulphate (SLES) (92.8%). A third experiment showed morphological changes in R. microplus oocytes at different stages of development, as well as in pedicel cells. The most intense effects were observed when ticks were immersed in the formulation containing 1,8-cineole (10.0% w/v) and castor oil (0.3% w/v) dissolved in 2% (w/v) SLES. These findings highlight the potential of this formulation as an alternative for managing cattle ticks as their cytotoxic effects can reduce R. microplus reproductive success.  相似文献   

10.
The metabolism of 1,4-14C-succinate and 2,3-14C-succinate and the activity of succinic semialdehyde dehydrogenase (EC 1.2.1.16) were studied in germinating seeds of castor oil plants (Ricinus communis L.). Succinate metabolism involved succinate dehydrogenase and was sensitive to metabolites of the γ-aminobutyric acid shunt. Considerable accumulation of the label in amino acids reflected the progression of transamination reactions. Succinic semialdehyde dehydrogenase was purified from the endosperm of castor oil plants. Kinetic characteristics of the enzyme were evaluated. Our study indicates that the mobilization of respiratory substrates during germination of castor oil plants is related to active transamination of ketoacids in the Krebs cycle and involves the γ-aminobutyric acid shunt.  相似文献   

11.
The red palm weevil, Rhynchophorus ferrugineus, is the biggest pest of various palm species. The aim of this study was to evaluate the impact of the essential oils of purslane, mustard and castor (bulk and nano) on R. ferrugineus and to evaluate the oviposition deterrent effect to prevent new infestations. Prepared concentrations of essential oils (bulk and nano) were tested for their impact on R. ferrugineus larvae, pupae and adults. The most effective oil was purslane oil (bulk and nano), followed by mustard and the least effective was castor. The percent mortality of larvae was 75.2, 45.3 and 17.9% (bulk phase) and 92.5, 84.4 and 65.5% (nano phase) in purslane, mustard and castor, respectively, when treated with the high concentration. The percent mortality of adults was 67.2, 40.0 and 15.6% (bulk phase) and 83.5, 72.9 and 60.0% (nano phase) in purslane, mustard and castor, respectively, when treated with the high concentration. The number of eggs laid decreased with increasing concentration of the tested oils. Purslane essential oil showed good impact on R. ferrugineus larvae and adults followed by mustard and castor oils as bulk and as nano.  相似文献   

12.
游离脂肪酶与固定化脂肪酶相比具有成本低、反应速率快等优势,是油脂化工中新的研究方向。前期研究表明,游离脂肪酶NS81006能高效催化多种油脂水解,进一步研究其对含独特羟基的绿色石油材料蓖麻油的水解过程,对于促进游离脂肪酶在新能源领域的应用具有重要意义。本文对影响游离脂肪酶NS81006催化蓖麻油水解过程的主要因素,温度、酶用量、水用量和搅拌速率进行了研究和优化,在优化后的条件下48 h水解率可达94.8%,且发现通过离心分离可有效实现NS81006的重复使用,连续回用5个批次,游离脂肪酶仍能有效催化水解反应。而对比高温高压法水解蓖麻油,发现游离脂肪酶NS81006具有明显优势。  相似文献   

13.
Two plant essential oils; camphor and castor were tested for insecticidal and antifeedant activity against the 4th instar larvae of Spodoptera littoralis, a serious pest on cotton in Egypt. Also the impact of LC10 of both oils on some physiological parameters in larvae was studied by using leaf dipping technique. Analysis of both oils using GC–MS revealed several insecticidal and antifeedant compounds. Our results showed higher insecticidal activity and antifeedant index of camphor oil against S. littoralis. The LC50 and the antifeedant indices were 163.1, 246.8?mg/ml and 12.69, 6.62% for camphor and castor bean oil, respectively. The total hemocyte count (THC) and differential hemocyte count (DHC) were reduced significantly after 48?h of treatment compared to controls. Both oils reduced all types of hemocytes except plasmatocytes which were reduced only by castor oil. Camphor oil decreased total proteins and carbohydrates while castor oil targeted only carbohydrate content. Both oils didn't affect the amount of total lipids. Lipase, α-amylase and glucose-6-phosphate dehydrogenase (G6PD) enzyme activities were increased significantly in larvae treated with camphor oil than other treatments. These results clearly indicate that castor and camphor oils can affect the nutritional status in S. littoralis larvae, thereby changing the internal metabolic processes in the larvae which make them as potential control agents in IPM programs against S. littoralis.  相似文献   

14.
Summary Castor oil was lipolysedin situ in homogenised castor seeds to the extent of 87% in 2 hr at pH 4.8 and 25–37°C, without recourse to isolation of lipase and oil from castor seeds.IICT Communication No. 2562  相似文献   

15.
In the current study, we present the synthesis of novel low cost bio‐polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR‐FTIR, and X‐ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in‐vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co‐polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non‐toxic to the cells. This study opens an avenue for using low cost bio‐polyurethane based on castor oil and glycerol for biomedical applications.  相似文献   

16.
Hydrolysis of castor oil using lipase enzyme is carried out in a batch reactor at room temperature (35–40 °C). In order to reduce the cost of enzyme catalyzed reaction, water in oil emulsion and a 3:1 ratio of oil to water is selected. The concentration of enzyme in the reaction mixture is optimized. The effect of various additives like solvent and salt which can enhance the rate of reaction is studied. It is found that the glycerol has no effect on the hydrolysis of oil. The reusability of the lipase enzyme has also been tested. The yield of enzymatic hydrolysis of castor oil is compared with those of coconut oil and olive oil.  相似文献   

17.
In the present study, we report on an optimized method for fatty acid methyl esters (FAME) production from castor and jatropha seeds. In order to identify the most effective biodiesel production method, we have compared three two-stage methods, each consisting of oil extraction (the first step) and FAME production by transesterification (the second step), with the same three techniques each conducted in one stage, i.e., direct transesterification. The three techniques are conventional heating, sonochemistry, and microwave radiation. The FAME product was analyzed by 1H NMR spectroscopy and GC-MS. The SrO catalyst was reused successfully, together with seeds containing oil residues, for 10 cycles. The highest yield of FAME, 57.2?% of the total weight of the castor seeds, and a conversion of castor oil to FAME of 99.95?% were achieved in a one-stage method lasting 5?min using microwave radiation as a heat source. Using jatropha seeds leads to a yield of 41.1?% and a 99.7?% conversion of triglyceride to FAME under microwave irradiation in a one-stage method. The direct transesterification by sonication resulted in yields of 48.2?% and 32.9?%, and a 93.6?% conversion from castor and jatropha seeds, respectively.  相似文献   

18.
Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.  相似文献   

19.
Kong X  Narine SS 《Biomacromolecules》2008,9(8):2221-2229
Sequential interpenetrating polymer networks (IPNs) were prepared using polyurethane produced from a canola oil based polyol with primary terminal functional groups and poly(methyl methacrylate) (PMMA). The properties of the material were studied and compared to the IPNs made from commercial castor oil using dynamic mechanical analysis, differential scanning calorimetry, as well as tensile measurements. The morphology of the IPNs was investigated using scanning electron microscopy and transmission electron microscopy. The chemical diversity of the starting materials allowed the evaluation of the effects of dangling chains and graftings on the properties of the IPNs. The polymerization process of canola oil based IPNs was accelerated because of the utilization of polyol with primary functional groups, which efficiently lessened the effect of dangling chains and yielded a higher degree of phase mixing. The mechanical properties of canola oil based IPNs containing more than 75 wt % PMMA were comparable to the corresponding castor oil based IPNs; both were superior to those of the constituent polymers due to the finely divided rubber and plastic combination structures in these IPNs. However, when PMMA content was less than 65 wt %, canola oil based IPNs exhibited a typical mechanical behavior of rigid plastics, whereas castor oil based IPNs showed a typical mechanical behavior of soft rubber. It is proposed that these new IPN materials with high performance prepared from alternative renewable resources can prove to be valuable substitutes for existing materials in various applications.  相似文献   

20.
The metabolism of 1,4-14C-succinate and 2,3-14C-succinate and the activity of succinic semialdehyde dehydrogenase (EC 1.2.1.16) were studied in germinating seeds of castor oil plants (Ricinus communis L.). Succinate metabolism involved succinate dehydrogenase and was sensitive to metabolites of the gamma-aminobutyric acid shunt. Considerable accumulation of the label in amino acids reflected the progression of transamination reactions. Succinic semialdehyde dehydrogenase was purified from the endosperm of castor oil plants. Kinetic characteristics of the enzyme were evaluated. Our study indicates that the mobilization of respiratory substrates during germination of castor oil plants is related to active transamination of ketoacids in the Krebs cycle and involves the gamma-aminobutyric acid shunt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号