首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we show that in human endothelial cells the tetraspanin CD63/lamp3 distributes predominantly to the internal membranes of multivesicular-multilamellar late endosomes, which contain the unique lipid lysobisphosphatidic acid. Some CD63/lamp3 is also present in Weibel-Palade bodies, the characteristic secretory organelle of these cells. We find that CD63/lamp3 molecules can be transported from late endosomes to Weibel-Palade bodies and thus that CD63/lamp3 cycles between endocytic and biosynthetic compartments; however, movement of CD63/lamp3 is much slower than that of P-selectin, which is known to cycle between plasma membrane and Weibel-Palade bodies. When cells are treated with U18666A, a drug that mimics the Niemann-Pick type C syndrome, both proteins accumulate in late endosomes and fail to reach Weibel-Palade bodies efficiently, suggesting that P-selectin, like CD63/lamp3, cycles via late endosomes. Our data suggest that CD63/lamp3 partitions preferentially within late endosome internal membranes, thus causing its accumulation, and that this mechanism contributes to CD63/lamp3 retention in late endosomes; however, our data also indicate that the protein can eventually escape from these internal membranes and recycle toward Weibel-Palade bodies to be reused. Our observations thus uncover the existence of a selective trafficking route from late endosomes to Weibel-Palade bodies.  相似文献   

2.
The transient appearance of P-selectin on the surface of endothelial cells helps recruit leukocytes into sites of inflammation. The tight control of cell surface P-selectin on these cells depends on regulated exocytosis of Weibel-Palade bodies where the protein is stored and on its rapid endocytosis. After endocytosis, P-selectin is either sorted via endosomes and the Golgi apparatus for storage in Weibel-Palade bodies or targeted to lysosomes for degradation. A potential player in this complex endocytic itinerary is SNX17, a member of the sorting nexin family, which has been shown in a yeast two-hybrid assay to bind P-selectin. Here, we show that overexpression of SNX17 in mammalian cells can influence two key steps in the endocytic trafficking of P-selectin. First, it promotes the endocytosis of P-selectin from the plasma membrane. Second, it inhibits the movement of P-selectin into lysosomes, thereby reducing its degradation.  相似文献   

3.
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca(2+)-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca(2+)-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

4.
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca2+-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca2+-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

5.
Von Willebrand factor (vWF) is a multimeric protein involved in the adhesion of platelets to an injured vessel wall. vWF is synthesized by the endothelial cell and the megakaryocyte as a precursor protein (pro-vWF) that consists of four repeated domains, denoted D1-D2-D'-D3-A1-A2-A3-D4-B1-B2-B3-C1-C2. Previously, we have defined the domains on the pro-vWF molecule involved in dimerization as well as the domains involved in multimer assembly of vWF dimers. In the endothelial cell, part of the vWF multimers is stored in specialized organelles, the Weibel-Palade bodies. By using immunoelectron microscopy, we demonstrate that upon expression of full-length vWF cDNA, vWF-containing organelles are encountered in monkey kidney CV-1 cells that are morphologically similar to the endothelial-specific Weibel-Palade bodies. Expression in CV-1 cells of a series of vWF cDNA deletion mutants, lacking one or more domains, revealed that only those vWF mutant proteins that are able to assemble into multimers are encountered in dense-cored vesicles. Our data show that this process is independent of a particular domain on vWF and indicate that a 'condensed', multimeric vWF is required for targeting to the Weibel-Palade body.  相似文献   

6.
Weibel-Palade bodies, the secretory granules of endothelial cells, possess two different membrane proteins. However, P-selectin is seen only in Weibel-Palade bodies in HUVECs, whereas CD63 is also seen in late endosomes/lysosomes. Since P-selectin is targeted to lysosomes in heterologous expression studies, we have determined whether a lysosomal targeting signal also operates within HUVECs. We have also examined the trafficking of CD63 to its two different intracellular locations. By following antibodies bound at the plasma membrane during stimulation, we have discovered that while half of the P-selectin recycles to the WPBs, 50% is rapidly delivered to a lamp-1-positive compartment. Thus, the lysosomal targeting signal of this protein also operates in HUVECs. CD63 is found constitutively at the cell surface of HUVECs and most of it is delivered to the late endosomes/lysosomes after internalisation. However, stimulation causes both a rise in the CD63 plasma membrane level and in the amount that recycles to the WPBs. Our data strongly suggest that the CD63 that originates in the WPB preferentially recycles to the granule rather than being delivered to the late endosome/lysosome, and that there are, therefore, two separate pools of this protein within HUVECs. Our findings indicate that although P-selectin and CD63 are both targeted to the same compartments from the PM, the kinetics and the ratio of their targeting to Weibel-Palade bodies versus lysosomes are very different.  相似文献   

7.
Recent studies demonstrate roles for osteoprotegerin (OPG) in both skeletal and extra-skeletal tissues. Although its role in preventing osteoclast (OC) formation and activity is well documented, emerging evidence suggests a role of OPG in endothelial cell survival and the prevention of arterial calcification. In this communication, we show that vascular endothelial cells in situ, and human umbilical vein endothelial cells (HUVEC) in vitro, express abundant OPG. In HUVEC, OPG co-localizes with P-selectin and von Willebrand factor (vWF), within the Weibel-Palade bodies (WPB). Treatment of HUVEC with the pro-inflammatory cytokines, tumor necrosis factor (TNF)-alpha and IL-1beta, resulted in mobilization from the WPBs and subsequent secretion of OPG protein into the culture supernatant. Furthermore, TNF-alpha treatment of HUVEC resulted in a sustained increase in OPG mRNA levels and protein secretion over the 24-h treatment period. Reciprocal immunoprecipitation experiments revealed that while not associated with P-Selectin, OPG is physically complexed with vWF both within the WPB and following secretion from endothelial cells. Interestingly, this association was also identified in human peripheral blood plasma. In addition to its interaction with vWF, we show that OPG also binds with high avidity to the vWF reductase, thrombospondin (TSP-1), raising the intriguing possibility that OPG may provide a link between TSP-1 and vWF. In summary, the intracellular localization of OPG in HUVEC, in association with vWF, together with its rapid and sustained secretory response to inflammatory stimuli, strongly support a modulatory role in vascular injury, inflammation and hemostasis.  相似文献   

8.
Weibel-Palade bodies (WPBs) are the lysosome-related secretory organelles of endothelial cells. Their content protein von Willebrand factor, plays a key role in haemostasis, whilst P-selectin in the membranes is critical in the initiation of inflammation. Biogenesis of these rod-shaped structures is driven by von Willebrand factor, since its heterologous expression leads to formation of organelles morphologically indistinguishable from bona fide WPBs. The two main membrane proteins of WPBs, CD63 and P-selectin, have complex itineraries controlled largely by cytoplasmic targeting signals. We are only just beginning to understand the way in which these three proteins come together to form mature WPBs.  相似文献   

9.
张喆  李巍 《遗传》2009,31(9):882-888
Weibel-Palade小体(Weibel-Palade body, WPB)是血管内皮细胞一种特殊的分泌性杆状细胞器, 含有多种生物活性分子, 受到刺激后可以非常迅速的释放这些内容物, 参与止血、炎症和血管生成等生理功能。血管假性血友病因子(von Willebrand Factor, vWF)作为该细胞器的主要组成分子, 其多聚体以管状形式在WPB中规则排列, 促使WPB独特的棒状形态的形成。伴随WPB的形成过程, 其他不同的分子如P-选择素、CD63、Rab27A、Rab3D等相继被运送到WPB中发挥其重要的功能。文章就近年来有关WPB形成的机制和功能等方面的进展进行了讨论。  相似文献   

10.
Biogenesis and exocytosis of Weibel-Palade bodies   总被引:8,自引:2,他引:6  
Vascular endothelial cells contain typical, elongated vesicles, the so-called Weibel-Palade bodies, which serve as a storage compartment for von Willebrand factor (VWF), a plasma protein that plays an essential role in controlling the adhesion and aggregation of platelets at sites of vascular injury. Upon activation of endothelial cells by agonists such as thrombin, epinephrine or histamine, the Weibel-Palade bodies fuse with the plasma membrane and release their contents into the blood circulation. This process provides an adequate means by which endothelial cells can actively participate in controlling the arrest of bleeding upon vascular damage. Besides VWF, Weibel-Palade bodies contain a subset of other proteins, including interleukin-8 (IL-8), P-selectin and endothelin. Similar to VWF, these proteins are transported to the outside of the cell upon stimulation and may control local or systemic biological effects, including inflammatory and vasoactive responses. Apparently, endothelial cells are able to create a storage pool for a variety of bioactive molecules which can be mobilised upon demand. Endothelial cells that are deficient of VWF synthesis are not only unable to form Weibel-Palade bodies, but also lack the ability to store IL-8 or P-selectin or release these proteins in a regulated manner. It thus appears that VWF not only plays a prominent role in controlling primary haemostasis, but also may modulate inflammatory processes through its ability to target inflammatory mediators to the regulated secretion pathway of the endothelium.  相似文献   

11.
Vascular endothelial cells are able to store the chemotactic cytokine interleukin-8 (IL-8) in specialized storage vesicles, Weibel-Palade bodies, together with von Willebrand factor (VWF) and P-selectin. We investigated whether VWF plays a role in the sorting of IL-8 into these organelles. We examined the effect of VWF expression on IL-8 targeting in an endothelial cell line (EC-RF24). This cell line has retained the typical phenotypic characteristics of primary endothelial cells but has lost the capacity to produce VWF in appreciable amounts. EC-RF24 cells were retrovirally transduced with a vector encoding a VWF-green fluorescent protein chimera (VWF-GFP). This approach enables direct visualization of the cellular distribution and secretory behavior of the VWF-GFP hybrid. Expression of VWF-GFP resulted in the generation of Weibel-Palade body-like organelles as shown by the colocalization of VWF-GFP and P-selectin. VWF-GFP expressing EC-RF24 cells also showed significant colocalization of VWF-GFP with IL-8 in these storage vesicles. Live cell imaging revealed that the number of VWF-GFP-containing granules decreased upon cell stimulation. These observations indicate that VWF plays an active role in sequestering IL-8 into Weibel-Palade bodies.  相似文献   

12.
The biogenesis of endothelial-specific Weibel-Palade bodies (WPB) is poorly understood, despite their key role in both haemostasis and inflammation. Biogenesis of specialized organelles of haemopoietic cells is often adaptor protein complex 3-dependent (AP-3-dependent), and AP-3 has previously been shown to play a role in the trafficking of both WPB membrane proteins, P-selectin and CD63. However, WPB are thought to form at the trans Golgi network (TGN), which is inconsistent with a role for AP-3, which operates in post-Golgi trafficking. We have therefore investigated in detail the mechanisms of delivery of these two membrane proteins to WPB. We find that P-selectin is recruited to forming WPB in the trans-Golgi by AP-3-independent mechanisms that use sorting information within both the cytoplasmic tail and the lumenal domain of the receptor. In contrast, CD63 is recruited to already-budded WPB by an AP-3-dependent route. These different mechanisms of recruitment lead to the presence of distinct immature and mature populations of WPB in human umbilical vein endothelial cells (HUVEC).  相似文献   

13.
von Willebrand factor (VWF) is a large, adhesive glycoprotein that is biosynthesized and secreted by cultured endothelial cells (EC). Although these cells constitutively release VWF, they also contain a storage pool of this protein that can be rapidly mobilized. In this study, a dense organelle fraction was isolated from cultured umbilical vein endothelial cells by centrifugation on a self-generated Percoll gradient. Stimulation of EC by 4-phorbol 12-myristate 13-acetate (PMA) resulted in the disappearance of this organelle fraction and the synchronous loss of Weibel-Palade bodies as judged by immunoelectron microscopy. Electrophoretic and serologic analyses of biosynthetically labeled dense organelle fraction revealed that it is comprised almost exclusively of VWF and its cleaved pro sequence. These two polypeptides were similarly localized exclusively to Weibel-Palade bodies by ultrastructural immunocytochemistry. The identity of the dense organelle as the Weibel-Palade body was further established by direct morphological examination of the dense organelle fraction. The VWF derived from this organelle is distributed among unusually high molecular weight multimers composed of fully processed monomeric subunits and is rapidly and quantitatively secreted in unmodified form after PMA stimulation. These studies: establish that the Weibel-Palade body is the endothelial-specific storage organelle for regulated VWF secretion; demonstrate that in cultured EC, the VWF concentrated in secretory organelles is of unusually high molecular weight and that this material may be rapidly mobilized in unmodified form; imply that proteolytic processing of VWF involved in regulated secretion takes place after translocation to the secretory organelle; provide a basis for further studies of intracellular protein trafficking in EC.  相似文献   

14.
P-selectin and E-selectin are related adhesion receptors for monocytes and neutrophils that are expressed by stimulated endothelial cells. P-selectin is stored in Weibel-Palade bodies, and it reaches the plasma membrane after exocytosis of these granules. E-selectin is not stored, and its synthesis is induced by cytokines. We studied the fate of the two proteins after their surface expression by following the intracellular routing of internalized antibodies to the selectins. By immunofluorescent staining, P-selectin antibody was first seen in endosomes, then in the Golgi region, and finally in Weibel-Palade bodies. In contrast, the E-selectin antibody was detected only in endosomes and lysosomes. Subcellular fractionation of cells after 4 h chase confirmed the localization of P-selectin antibody in storage granules and of the E-selectin antibody in lysosomes. In AtT-20 cells, a mouse pituitary cell line, transfected with P- or E-selectin, only P-selectin was delivered to the endogenous adrenocorticotrophic hormone storage granules after endocytosis. Deletion of the cytoplasmic domain abolished internalization. In summary, after a brief surface exposure, internalized E-selectin is degraded in the lysosomes, whereas P-selectin returns to the storage granules from where it can be reused.  相似文献   

15.
Endothelial cells exhibit regulated exocytosis in response to inflammatory mediators such as thrombin and histamine. The exocytosis of Weibel-Palade bodies (WPBs) containing von Willebrand factor, P-selectin, and interleukin-8 within minutes after stimulation is important for vascular homeostasis. SNARE proteins are key components of the exocytic machinery in neurons and some secretory cells, but their role in regulating exocytosis in endothelial cells is not well understood. We examined the function of SNARE proteins in mediating exocytosis of WPBs in endothelial cells. We identified the presence of syntaxin 4, syntaxin 3, and the high affinity syntaxin 4-regulatory protein Munc18c in human lung microvascular endothelial cells. Small interfering RNA-induced knockdown of syntaxin 4 (but not of syntaxin 3) inhibited exocytosis of WPBs as detected by the reduction in thrombin-induced cell surface P-selectin expression. Thrombin ligation of protease-activated receptor-1 activated the phosphorylation of syntaxin 4 and Munc18c, which, in turn, disrupted the interaction between syntaxin 4 and Munc18. Protein kinase Calpha activation was required for the phosphorylation of syntaxin 4 and Munc18c as well as the cell surface expression of P-selectin. We also observed that syntaxin 4 knockdown inhibited the adhesion of neutrophils to thrombin-activated endothelial cells, demonstrating the functional role of syntaxin 4 in promoting endothelial adhesivity. Thus, protease-activated receptor-1-induced protein kinase Calpha activation and phosphorylation of syntaxin 4 and Munc18c are required for the cell surface expression of P-selectin and the consequent binding of neutrophils to endothelial cells.  相似文献   

16.
The time course for cell surface loss of von Willebrand factor (VWF) and the propolypeptide of VWF (proregion) following exocytosis of individual Weibel-Palade bodies (WPBs) from single human endothelial cells was analyzed. Chimeras of enhanced green fluorescent protein (EGFP) and full-length pre-pro-VWF (VWF-EGFP) or the VWF propolypeptide (proregion-EGFP) were made and expressed in human umbilical vein endothelial cells. Expression of VWF-EGFP or proregion-EGFP resulted in fluorescent rod-shaped organelles that recruited the WPB membrane markers P-selectin and CD63. The WPB secretagogue histamine evoked exocytosis of these fluorescent WPBs and extracellular release of VWF-EGFP or proregion-EGFP. Secreted VWF-EGFP formed distinctive extracellular patches of fluorescence that were labeled with an extracellular antibody to VWF. The half-time for dispersal of VWF-EGFP from extracellular patches was 323.5 +/- 146.2 s (+/-S.D., n = 20 WPBs). In contrast, secreted proregion-EGFP did not form extracellular patches but dispersed rapidly from its site of release. The half-time for dispersal of proregion-EGFP following WPB exocytosis was 2.98 +/- 1.88 s (+/-S.D., n = 32 WPBs). The slow rate of loss of VWF-EGFP is consistent with the adhesive nature of this protein for the endothelial membrane. The much faster rate of loss of proregion-EGFP indicates that this protein does not interact strongly with extracellular VWF or the endothelial membrane and consequently may not play an adhesive role at the endothelial cell surface.  相似文献   

17.
P-selectin is a cell adhesion molecule required transiently on the surface of activated platelets and endothelial cells as a receptor for leukocytes. It is stored in secretory granules in platelets, endothelial cells, and transfected neuroendocrine cells and is rapidly delivered to the plasma membrane upon exocytosis of the secretory granules. It is then rapidly internalized in endothelial cells and transfected cells. We find that in transfected neuroendocrine PC12 cells, the fraction of P-selectin that is not targeted to secretory granules is rapidly degraded. In transfected CHO fibroblasts, which lack secretory granules, P-selectin was degraded with a half time of 2.3 h in plated cells, while low density lipoprotein receptor (LDL-R) had a half life of 9 h. In cells cultured in ammonium chloride to inhibit lysosomal proteinases, P-selectin was protected from degradation and rapidly accumulated in vesicles enriched in lgp-B, a resident lysosomal membrane protein. The cytoplasmic domain of P- selectin was sufficient to confer rapid turnover on LDL-R. Deletion of 10 amino acids from the cytoplasmic domain of P-selectin extended the half life to 9.5 h and abrogated rapid lysosomal targeting in the presence of ammonium chloride, implicating this sequence as a necessary element of a novel lysosomal targeting signal. The rate limiting step in degradation occurred after internalization from the cell surface, indicating that sorting of P-selectin away from efficiently recycled proteins occurs in endosomes. We propose that this sorting event represents a constitutive equivalent of receptor down regulation, and may function to regulate the expression of P-selectin at the surface of activated endothelial cells.  相似文献   

18.
How to roll an endothelial cigar: the biogenesis of Weibel-Palade bodies   总被引:5,自引:0,他引:5  
Weibel-Palade bodies (WPB) are the regulated secretory organelles of endothelial cells. These cigar-shaped membrane-bound structures function in both hemostasis and inflammation but their biogenesis is poorly understood. Here, we review what is currently known about their formation. The content of WPBs is dominated by the hemostatic factor von Willebrand factor (VWF), whose complex biogenesis ends in the formation of high molecular weight multimers. VWF is also organized into proteinaceous tubules which underlie the striated interior of WPBs as seen in the EM. VWF expression is necessary for formation of WPBs, and its heterologous expression can even lead to the specific recruitment of WPB membrane proteins, including the leukocyte receptor P-selectin, the tetraspanin CD63, and Rab27a. Unusually, the VWF propeptide is implicated in the biogenesis of WPBs, being essential for formation of the storage compartment. The elongation of the cigars and the formation of the tubules are determined by non-covalent interactions between pro- and mature VWF proteins. Surprisingly, high molecular weight multimers seem neither necessary nor sufficient to trigger formation of a storage compartment, and do not seem to have any role in WPB biogenesis. Von Willebrand's disease, usually caused by mutations within VWF, has provided many of the insights into the way in which VWF drives the formation of these organelles.  相似文献   

19.
Secretion Pores in Human Endothelial Cells during Acute Hypoxia   总被引:6,自引:0,他引:6  
Weibel-Palade bodies (WPB) are endothelial vesicles that store von Willebrand factor (vWF), involved in the early phase of hemostasis. In the present study we investigated the morphodynamics of single WPB plasma membrane fusion events upon hypoxic stimulation by using atomic force microscopy (AFM). Simultaneously, we measured vWF release from endothelial cells to functionally confirm WPB exocytosis. Exposing human endothelial cells to hypoxia (pO2 = 5 mm Hg) we found an acute (within minutes) release of vWF. Despite acute vWF release, potential cellular modulators of secretion, such as intracellular pH and cell volume, remained unchanged. We only detected a slight instantaneous increase of cytosolic Ca2+ concentration. Although overall cell morphology remained virtually unchanged, high resolution AFM images of hypoxic endothelial cells disclosed secretion pores, most likely the loci of WPB exocytosis on luminal plasma membrane. We conclude that short-term hypoxia barely alters overall cell morphology and intracellular milieu. However, at nanometer scale, hypoxia instantaneously switches the smooth luminal plasma membrane to a rough activated cell surface, covered with secretion pores that release vWF to the luminal cell surface.  相似文献   

20.
Summary Weibel-Palade bodies are ultrastructurally defined organelles found only in vascular endothelial cells. Because endothelium in corpo is very dispersed, isolation and further characterization of this organelle has been dependent on increasing the number of cells in culture. However, primary isolates of endothelial cells have a limited replication potential and tend to senesce in culture. In this report, EA.hy926, a continuously replicating cell line derived from human endothelium, is shown to contain Weibel-Palade bodies. Electron micrographs demonstrate the ultrastructural characteristics of these tissue-specific organelles and their cytoplasmic distribution in EA.hy926 cells. Von Willebrand factor, which has been shown to exist in Weibel Palade bodies, is demonstrated by immunofluorescence in discrete rod-shaped organelles whose size, shape, and distribution are consistent with that of Weibel-Palade bodies in primary endothelial cell cultures. Rapid release of von Willebrand factor can be induced by calcium ionophore, and large multimeric forms of the protein are found in EA.hy926 cells. These two properties are consistent with the function currently ascribed to Weibel Palade bodies: storage of multimerized von Willebrand factor. Thus ultrastructural, immunologic, and functional data establish the existence of this as yet poorly understood tissue-specific organelle in a continuous, vigorously replicating human cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号