首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixteen yeast isolates identified as belonging to the genus Sugiyamaella were studied in relation to D-xylose fermentation, xylitol production, and xylanase activities. The yeasts were recovered from rotting wood and sugarcane bagasse samples in different Brazilian regions. Sequence analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of large subunit rRNA gene showed that these isolates belong to seven new species. The species are described here as Sugiyamaella ayubii f.a., sp. nov. (UFMG-CM-Y607T = CBS 14108T), Sugiyamaella bahiana f.a., sp. nov. (UFMG-CM-Y304T = CBS 13474T), Sugiyamaella bonitensis f.a., sp. nov. (UFMG-CM-Y608T = CBS 14270T), Sugiyamaella carassensis f.a., sp. nov. (UFMG-CM-Y606T = CBS 14107T), Sugiyamaella ligni f.a., sp. nov. (UFMG-CM-Y295T = CBS 13482T), Sugiyamaella valenteae f.a., sp. nov. (UFMG-CM-Y609T = CBS 14109T) and Sugiyamaella xylolytica f.a., sp. nov. (UFMG-CM-Y348T = CBS 13493T). Strains of the described species S. boreocaroliniensis, S. lignohabitans, S. novakii and S. xylanicola, isolated from rotting wood of Brazilian ecosystems, were also compared for traits relevant to xylose metabolism. S. valenteae sp. nov., S. xylolytica sp. nov., S. bahiana sp. nov., S. bonitensis sp. nov., S. boreocarolinensis, S. lignohabitans and S. xylanicola were able to ferment d-xylose to ethanol. Xylitol production was observed for all Sugiyamaella species studied, except for S. ayubii sp. nov. All species studied showed xylanolytic activity, with S. xylanicola, S. lignohabitans and S. valenteae sp. nov. having the highest values. Our results suggest these Sugiyamaella species have good potential for biotechnological applications.  相似文献   

2.
A novel actinomycete, designated strain NEAU-LA29T, was isolated from soil collected from Xianglu Mountain and subjected to a polyphasic taxonomic study. Based on a polyphasic taxonomic approach comprising chemotaxonomic, phylogenetic, morphological and physiological characterisation, the isolate has been affiliated to the genus Streptomyces. 16S rRNA gene sequence analysis showed that the isolate is closely related to Streptomyces vastus JCM4524T (98.8% identity) and Streptomyces cinereus DSM43033T (97.9%). However, multilocus sequence analysis based on five other house-keeping genes (atpD, gyrB, rpoB, recA and trpB) and low DNA–DNA relatedness values enabled the strain to be differentiated from these closely related species of the genus Streptomyces. Thus, strain NEAU-LA29T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces xiangluensis sp. nov. is proposed. The type strain is NEAU-LA29T (=?CGMCC 4.7466T?=?DSM 105786T).  相似文献   

3.
A novel actinomycete strain, designated TRM 49605T, was isolated from a desert soil sample from Lop Nur, Xinjiang, north-west China, and characterised using a polyphasic taxonomic approach. The strain exhibited antifungal activity against the following strains: Saccharomyces cerevisiae, Curvularia lunata, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Penicillium citrinum, Candida albicans and Candida tropicalis; Antibacterial activity against Bacillus subtilis, Staphylococcus epidermidis and Micrococcus luteus; and no antibacterial activity against Escherichia coli. Phylogenetic analysis based on 16S rRNA gene sequences affiliated strain TRM 49605T to the genus Streptomyces. Strain TRM 49605T shows high sequence similarities to Streptomyces roseolilacinus NBRC 12815T (98.62 %), Streptomyces flavovariabilis NRRL B-16367T (98.45 %) and Streptomyces variegatus NRRL B-16380T (98.45 %). Whole cell hydrolysates of strain TRM 49605T were found to contain ll-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, xylose and mannose as the major whole cell sugars. The major fatty acids in strain TRM 49605T were identified as iso C16:0, anteiso C15:0, C16:0 and Summed Feature 5 as defined by MIDI. The main menaquinones were identified as MK-9(H4), MK-9(H6), MK-9(H8) and MK-10(H6). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The G+C content of the genomic DNA was determined to be 71.2 %. The DNA–DNA relatedness between strain TRM 49605T and the phylogenetically related strain S. roseolilacinus NBRC 12815T was 60.12 ± 0.06 %, which is lower than the 70 % threshold value for delineation of genomic prokaryotic species. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain TRM 49605T (=CCTCC AA2015026T = KCTC 39666T) should be designated as the type strain of a novel species of the genus Streptomyces, for which the name Streptomyces luozhongensis sp. nov. is proposed.  相似文献   

4.
Strain DMKU-SP105T representing a novel yeast species was isolated from the external surface of a sugarcane leaf (Saccharum officinarum L.) collected from a sugarcane plantation field in Phichit province, Thailand. On the basis of sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, the strain DMKU-SP105T differed by 7–16 substitutions in the D1/D2 region of LSU rRNA gene and 6–22 substitutions in the ITS region from a group of related species, Papiliotrema aspenensis, Papiliotrema odontotermitis, Papiliotrema rajasthanensis and Papiliotrema laurentii. A phylogenetic analysis based on the concatenated sequences of ITS region and the D1/D2 region of the LSU rRNA gene indicated that strain DMKU-SP105T belongs to the laurentii clade of Papiliotrema in the Tremellales and is distinct from other related species in the clade. It therefore represents a novel species of the genus Papiliotrema although the formation of basidiospores was not observed. The name Papiliotrema phichitensis f.a., sp. nov. is proposed. The type is DMKU-SP105T (=?CBS 13390T?=?BCC 61187T?=?NBRC 109699T).  相似文献   

5.
A novel actinomycete, designated strain NEAU-mq18T, was isolated from the rhizosphere soil of a rubber tree (Hevea brasiliensis Muell. Arg) collected from Xianglu Mountain in Heilongjiang Province, northeast China, and subjected to a polyphasic taxonomic study. The 16S rRNA gene sequence analysis showed that the isolate belongs to the genus Nonomuraea with high sequence similarity to Nonomuraea guangzhouensis NEAU-ZJ3T (98.5%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain clusters phylogenetically with N. guangzhouensis NEAU-ZJ3T and Nonomuraea glycinis NEAU-BB2C19T. Moreover, key chemotaxonomic properties including the major menaquinones, fatty acid composition and phospholipid profile also confirmed the affiliation of the strain to the genus Nonomuraea. However, some physiological, morphological and biochemical properties, and low DNA–DNA relatedness values, enabled the strain to be differentiated from closely related species of the genus Nonomuraea. Thus, strain NEAU-mq18T is concluded to represent a novel species of the genus Nonomuraea, for which the name Nonomuraea rhizosphaerae sp. nov. is proposed. The type strain is NEAU-mq18T (=CGMCC 4.7431T=DSM 105761T).  相似文献   

6.
A Gram-positive, strictly aerobic, nonmotile, yellowish, coccus-rod-shaped bacterium (designated Gsoil 653T) isolated from ginseng cultivating soil was characterized using a polyphasic approach to clarify its taxonomic position. The strain Gsoil 653T exhibited optimal growth at pH 7.0 on R2A agar medium at 30°C. Phylogenetic analysis based on 16S rRNA gene sequence similarities, indicated that Gsoil 653T belongs to the genus Terrabacter of the family Humibacillus, and was closely related to Terrabacter tumescens DSM 20308T (98.9%), Terrabacter carboxydivorans PY2T (98.9%), Terrabacter terrigena ON10T (98.8%), Terrabacter terrae PPLBT (98.6%), and Terrabacter lapilli LR-26T (98.6%). The DNA G + C content was 70.5 mol%. The major quinone was MK-8(H4). The primary polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidyl-ethanolamine. The predominant fatty acids were iso-C15:0, iso-C16:0, iso-C14:0, and anteiso-C15:0, as in the case of genus Terrabacter, thereby supporting the categorization of strain Gsoil 653T. However, the DNA-DNA relatedness between Gsoil 653T and closely related strains of Terrabacter species was low at less than 31%. Moreover, strain Gsoil 653T could be both genotypically and phenotypically distinguished from the recognized species of the genus Terrabacter. This isolate, therefore, represents a novel species, for which the name Terrabacter ginsengisoli sp. nov. is proposed with the type strain Gsoil 653T (= KACC 19444T = LMG 30325T).  相似文献   

7.
A Gram-stain-negative, facultative aerobic, non-flagellated, and rod-shaped bacterium, designated AR-13T, was isolated from a seawater on the East Sea in South Korea, and subjected to a polyphasic taxonomic study. Strain AR-13T grew optimally at 30°C, at pH 7.0–8.0 and in the presence of 0–0.5% (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain AR-13T fell within the clade comprising the type strains of Arcobacter species, clustering coherently with the type strain of Arcobacter venerupis. Strain AR-13T exhibited 16S rRNA gene sequence similarity values of 98.1% to the type strain of A. venerupis and of 93.2–96.9% to the type strains of the other Arcobacter species. Strain AR-13T contained MK-6 as the only menaquinone and summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0, C18:1ω7c, and summed feature 2 (iso-C16:1 I and/or C14:0 3-OH) as the major fatty acids. The major polar lipids detected in strain AR-13T were phosphatidylethanolamine, phosphatidylglycerol, and one unidentified aminophospholipid. The DNA G+C content was 28.3 mol% and its mean DNA-DNA relatedness value with the type strain of A. venerupis was 21%. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain AR-13T is separated from recognized Arcobacter species. On the basis of the data presented, strain AR-13T is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter acticola sp. nov. is proposed. The type strain is AR-13T (=KCTC 52212T =NBRC 112272T).  相似文献   

8.
A Gram negative, aerobic, non-motile and rod-shaped bacterial strain designated as Gr-2T was isolated from granules used in a wastewater treatment plant in Korea, and its taxonomic position was investigated using a polyphasic approach. Strain Gr-2T grew at 18–37°C (optimum temperature, 30°C) and a pH of 6.0–8.0 (optimum pH, 7.0) on R2A agar medium. Based on 16S rRNA gene phylogeny, the novel strain showed a new branch within the genus Pseudaminobacter of the family Phyllobacteriaceae, and formed clusters with Pseudaminobacter defluvii THI 051T (98.9%) and Pseudaminobacter salicylatoxidans BN12T (98.7%). The G+C content of the genomic DNA was 63.6%. The predominant respiratory quinone was ubiquinone-10 (Q-10) and the major fatty acids were cyclo-C19:0 ω8c, C18:1 ω7c, and iso-C17:0. The overall polar lipid patterns of Gr-2T were similar to those determined for the other Pseudaminobacter species. DNA-DNA relatedness values between strain Gr-2T and its closest phylogenetically neighbors were below 18%. Strain Gr-2T could be differentiated genotypically and phenotypically from the recognized species of the genus Pseudaminobacter. The isolate therefore represents a novel species, for which the name Pseudaminobacter granuli sp. nov. is proposed with the type strain Gr-2T (=KACC 18877T =LMG 29567T).  相似文献   

9.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

10.
A novel Gram-negative, motile, and ovoid-shaped strain, LHWP3T, which belonged to the family Planctomycetaceae in the phylum Planctomycetes, was isolated from a dead ark clam Scapharca broughtonii collected during a mass mortality event on the south coast of Korea. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the isolate was most closely related to the type strain of Rhodopirellula baltica, with a shared 16S rRNA gene sequence similarity of 94.8%. The isolate grew optimally at 30°C in 4–6% (w/v) NaCl, and at pH 7. The major isoprenoid quinone was menaquinone-6 (MK-6). The dominant polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, and unidentified polar lipids. The predominant cellular fatty acids were C16:0, C18:1 ω9c, and C18:0. The genomic DNA G+C content of strain LHWP3T was 53.0 mol%. Based on polyphasic taxonomic analyses, strain LHWP3T should be classified as a novel species in the genus Rhodopirellula in the family Planctomycetaceae, for which the name Rhodopirellula rosea sp. nov. is proposed. The type strain is LHWP3T (=KACC 15560T =JCM 17759T).  相似文献   

11.
Gram-positive, aerobic, non-motile, pale-yellow, and rodshaped bacterium, designated as Gsoil 188T, was isolated from the soil of a ginseng field in Pocheon, South Korea. A phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that the strain formed a distinct lineage within the genus Brevibacterium and was most closely related to B. epidermidis NBRC 14811T (98.4%), B. sediminis FXJ8.269T (98.2%), B. avium NCFB 3055T (98.1%), and B. oceani BBH7T (98.1%), while it shared less than 98.1% identity with the other species of this genus. The DNA G + C content was 68.1 mol%. The predominant quinone was MK-8(H2). The major fatty acids were anteiso-C15:0 and anteiso-C17:0. The cell wall peptidoglycan of strain Gsoil 188T contained meso-diaminopimelic acid. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, and an unidentified aminolipid. The physiological and biochemical characteristics, low DNA-DNA relatedness values, and taxonomic analysis allowed the differentiation of strain Gsoil 188T from the other recognized species of the genus Brevibacterium. Therefore, strain Gsoil 188T represents a novel species of the genus Brevibacterium, for which the name Brevibacterium anseongense sp. nov. is proposed, with the type strain Gsoil 188T (= KACC 19439T = LMG 30331T).  相似文献   

12.
The taxonomic position of a Gram-stain-negative, rod-shaped bacterial strain, designated PI11T, isolated from the rhizospheric sediment of Phragmites karka was characterized using a polyphasic approach. Strain PI11T could grow optimally at 1.0% NaCl concentration with pH 7.0 at 30°C and was positive for oxidase and catalase but negative for hydrolysis of starch, casein, and esculin ferric citrate. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain PI11T belonged to the genus Pseudomonas sharing the highest sequence similarities with Pseudomonas indoloxydans JCM 14246T (99.72%), followed by, Pseudomonas oleovorans subsp. oleovorans DSM 1045T (99.29%), Pseudomonas toyotomiensis JCM 15604T (99.15%), Pseudomonas chengduensis DSM 26382T (99.08%), Pseudomonas oleovorans subsp. lubricantis DSM 21016T (99.08%), and Pseudomonas alcaliphila JCM 10630T (99.01%). Experimental DNA-DNA relatedness between strain PI11T and P. indoloxydans JCM 14246T was 49.4%. The draft genome of strain PI11T consisted of 4,884,839 bp. Average nucleotide identity between the genome of strain PI11T and other closely related type strains ranged between 77.25–90.74%. The polar lipid pattern comprised of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine. The major (> 10%) cellular fatty acids were C18:1ω6c/ω7c, C16:1ω6c/ω7c, and C16:0. The DNA G + C content of strain PI11T was 62.4 mol%. Based on the results of polyphasic analysis, strain PI11T was delineated from other closely related type strains. It is proposed that strain PI11T represents represents a novel species of the genus Pseudomonas, for which the name Pseudomonas sediminis sp. nov. is proposed. The type strain is PI11T (= KCTC 42576T = DSMZ 100245T).  相似文献   

13.
The taxonomic position of a new Saccharothrix strain, designated MB46T, isolated from a Saharan soil sample collected in Mzab region (Ghardaïa province, South Algeria) was established following a polyphasic approach. The novel microorganism has morphological and chemical characteristics typical of the members of the genus Saccharothrix and formed a phyletic line at the periphery of the Saccharothrix espanaensis subcluster in the 16S rRNA gene dendrograms. Results of the 16S rRNA gene sequence comparisons revealed that strain MB46T shares high degrees of similarity with S. espanaensis DSM 44229T (99.2%), Saccharothrix variisporea DSM 43911T (98.7%) and Saccharothrix texasensis NRRL B-16134T (98.6%). However, the new strain exhibited only 12.5–17.5% DNA relatedness to the neighbouring Saccharothrix spp. On the basis of phenotypic characteristics, 16S rRNA gene sequence comparisons and DNA-DNA hybridizations, strain MB46T is concluded to represent a novel species of the genus Saccharothrix, for which the name Saccharothrix ghardaiensis sp. nov. (type strain MB46T = DSM 46886T = CECT 9046T) is proposed.  相似文献   

14.
The taxonomic provenance of a filamentous actinobacterial strain isolated from a desert soil was established using a polyphasic approach. The strain has chemotaxonomic and morphological properties consistent with its classification in the genus Saccharothrix. It forms a distinct branch in the Saccharothrix 16S rRNA gene tree, related to the type strain of Saccharothrix saharensis (96.7%) but was distinguished readily from it using a combination of phenotypic properties. The genotypic and phenotypic data show that the strain represents a novel species in the genus Saccharothrix, for which the name Saccharothrix tharensis sp. nov. is proposed with the type strain TD-093T (=?KCTC 39724T?=?MCC 2832T).  相似文献   

15.
A novel bacterium, strain 1ZS3-15T, was isolated from rhizosphere of rice. Its taxonomic position was investigated using a polyphasic approach. The novel strain was observed to be Gram-stain positive, spore-forming, aerobic, motile and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 1ZS3-15T was recovered within the genus Paenibacillus. It is closely related to Paenibacillus pectinilyticus KCTC 13222T (97.9 % similarity), Paenibacillus frigoriresistens CCTCC AB 2011150T (96.8 %), Paenibacillus alginolyticus JCM 9068T (96.4 %) and Paenibacillus chondroitinus DSM 5051T (95.5 %). The fatty acid profile of strain 1ZS3-15T, which showed a predominance of anteiso-C15:0 and iso-C16:0, supported the allocation of the strain into the genus Paenibacillus. The predominant menaquinone was found to be MK-7. The polar lipids profile of strain 1ZS3-15T was found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified lipid and two unidentified aminophospholipids. The cell wall peptidoglycan contains meso-diaminopimelic acid. Based on draft genome sequences, the DNA–DNA relatedness between strain 1ZS3-15T and the closely related species P. pectinilyticus KCTC 13222T are 24.2 ± 1.0 %, and the Average Nucleotide Identity values between the strains are 78.9 ± 0.1 %, which demonstrated that this isolate represents a new species in the genus Paenibacillus. The DNA G+C content was determined to be 45.3 mol%, which is within the range reported for Paenibacillus species. Characterisation by genotypic, chemotaxonomic and phenotypic analysis indicated that strain 1ZS3-15T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus oryzisoli sp. nov. is proposed. The type strain is 1ZS3-15T (= ACCC 19783T = JCM 30487T).  相似文献   

16.
A Gram-stain negative, aerobic, rod-shaped, non-motile, yellow-pigmented and non-spore-forming bacterial strain, designated PM5-8T, was isolated from a culture of a marine toxigenic dinoflagellate Prorocentrum mexicanum PM01. Strain PM5-8T grew at 15–35 °C (optimum, 25–30 °C) and pH 6–11 (optimum, 7.5–8). Cells required at least 1.5% (w/v) NaCl for growth, and can tolerate up to 7.0% with the optimum of 4%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the strain PM5-8T is closely related to members of the genus Hoeflea, with high sequence similarities with Hoeflea halophila JG120-1T (97.06%) and Hoeflea alexandrii AM1V30T (97.01%). DNA–DNA hybridization values between the isolate and other type strains of recognized species of the genus Hoeflea were between 11.8 and 25.2%, which is far below the value of 70% threshold for species delineation. The DNA G?+?C content was 50.3 mol%. The predominant cellular fatty acids of the strain were identified as summed feature 8 (C16:1 ω7c and/or C16:1 ω6c; 51.5%), C18:1 ω7c 11-methyl (20.7%), C16:0 (17.2%) and C18:0 (5.7%). The major respiratory quinone was Q-10. Polar lipids profiles contained phosphatidylcholine, phosphatidylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylmono- methylethanolamine, phosphatidylethanolamine and four unidentified lipids. On the basis of the polyphasic taxonomic data presented, strain PM5-8T (=?CCTCC AB 2016294T?=?KCTC 62490T) represents a novel species of the genus Hoeflea, for which the name Hoeflea prorocentri sp. nov. is proposed.  相似文献   

17.
Various Talaromyces strains were isolated during a survey of fungi involved in leaf litter decomposition in tropical lowland forests in the Caquetá and Amacayacu areas of the Colombian Amazon. Four new Talaromyces species are described using a polyphasic approach, which includes phenotypic characters, extrolite profiles and phylogenetic analysis of the internal transcribed spacer region (ITS) barcode, and beta-tubulin (BenA) and calmodulin (CaM) gene regions. Talaromyces amazonensis sp. nov., T. francoae sp. nov. and T. purgamentorum sp. nov. belong to Talaromyces section Talaromyces, and T. columbiensis sp. nov. is located in section Bacillispori. The new species produce several bioactive compounds: T. amazonensis produces the potential anticancer agents duclauxin, berkelic acid and vermicillin, and T. columbiensis produces the effective anticancer agent wortmannin (together with duclauxin). In addition to the new species, T. aculeatus and T. macrosporus were isolated during this study on leaf litter decomposition.  相似文献   

18.
A Gram-stain negative, aerobic, motile, non-spore-forming and rod-shaped bacterial strain, designated YIM 730227T, was isolated from a soil sample, collected from Karak district, Khyber-Pakhtun-Khwa, Pakistan. The bacterium was characterized using a polyphasic taxonomic approach. Pairwise comparison of the 16S rRNA gene sequences showed that strain YIM 730227T is closely related to Phenylobacterium lituiforme FaiI3T (97.5% sequence similarity), Phenylobacterium muchangponense A8T (97.4%), Phenylobacterium panacis DCY109T (97.1%), Phenylobacterium immobile ET (97.1%) and Phenylobacterium composti 4T-6T (97.0%), while also sharing 98.0% sequence similarity with Phenylobacterium hankyongense HKS-05T after NCBI blast, showing it represents a member of the family Caulobacteraceae. The major respiratory quinone was Q-10 and the major fatty acids were C16:0, summed feature 8 (comprising C18:1ω7c and/or C18:1ω6c), C18:1ω7c 11-methyl and C17:0. The polar lipids were phosphatidylglycerol, unidentified glycolipids, phospholipid and unidentified lipid. The G?+?C content of the genomic DNA was 68.2 mol%. The DNA–DNA relatedness values of strain YIM 730227T with P. hankyongense HKS-05T, P. lituiforme FaiI3T, P. muchangponense A8T, P. panacis DCY109T, P. immobile ET and P. composti 4T-6T were 31.3?±?0.6, 26.1?±?0.2, 24.3?±?0.1, 21.8?±?0.9, 19.8?±?0.6 and 18.2?±?1.1%, respectively, values lower than 70%. Besides the morphological and chemotaxonomic characteristics, phylogenetic analyses of 16S rRNA gene sequences and the biochemical characteristics indicated that the strain YIM 730227T represents a novel member of the genus Phenylobacterium, for which the name Phenylobacterium terrae sp. nov. (type strain YIM 730227T =?KCTC62324T?=?CGMCC 1.16326T) is proposed.  相似文献   

19.
Strain ZZ-8T, a Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented, rod-shaped bacterium, was isolated from metolachlor-contaminated soil in China. The taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZZ-8T is a member of the genus Flavobacterium and shows high sequence similarity to Flavobacterium humicola UCM-46T (97.2%) and Flavobacterium pedocola UCM-R36T (97.1%), and lower (<?97%) sequence similarity to other known Flavobacterium species. Chemotaxonomic analysis revealed that strain ZZ-8T possessed MK-6 as the major respiratory quinone; and iso-C15:0 (28.5%), summed feature 9 (iso-C17:1 w9c/C16:0 10-methyl, 22.9%), iso-C17:0 3-OH (17.0%), iso-C15:0 3-OH (8.9%), iso-C15:1 G (8.6%) and summed feature 3 (C16:1 w7c/C16:1 w6c, 5.7%) as the predominant fatty acids. The polar lipids of strain ZZ-8T were determined to be lipids, a glycolipid, aminolipids and phosphatidylethanolamine. Strain ZZ-8T showed low DNA–DNA relatedness with F. pedocola UCM-R36T (43.23?±?4.1%) and F. humicola UCM-46T (29.17?±?3.8%). The DNA G+C content was 43.3 mol%. Based on the phylogenetic and phenotypic characteristics, chemotaxonomic data and DNA–DNA hybridization, strain ZZ-8T is considered a novel species of the genus Flavobacterium, for which the name Flavobacterium zaozhuangense sp. nov. (type strain ZZ-8T?=?KCTC 62315 T?=?CCTCC AB 2017243T) is proposed.  相似文献   

20.
The taxonomic position of bacterial strain, designated 15J16-1T3AT, recovered from a soil sample was established using a polyphasic approach. Phylogenic analysis based on the 16S rRNA gene sequence showed that strain 15J16-1T3AT belonged to the family Cytophagaceae, phylum Bacteroidetes, and was most closely related to ‘Larkinella harenae’ 15J9-9 (95.9% similarity), Larkinella ripae 15J11-11T (95.6%), Larkinella bovis M2TB15T (94.7%), Larkinella arboricola Z0532T (93.9%), and Larkinella insperata LMG 22510T (93.5%). Cells were rod-shaped, Gram-stain-negative, aerobic, and nonmotile. The isolate grew on NA, R2A, TSA, but not on LB agar. The strain was able to grow at temperature range from 10°C to 30°C with an optimum at 25°C and pH 6–8. Menaquinone MK-7 was the predominant respiratory quinone. The major cellular fatty acids comprised C16:1ω5c (48.6%) and C15:0 iso (24.1%). Phosphatidylethanolamine, phosphatidylserine, and an unidentified lipid were the major polar lipids. The G + C content of the genomic DNA was 49.5 mol%. Strain 15J16-1T3AT could be distinguished from its closest phylogenetic neighbors based on its phenotypic, genotypic, and chemotaxonomic features. Therefore, the isolate is considered to represent a novel species in the genus Larkinella, for which the name Larkinella roseus sp. nov. is proposed. The type strain is 15J16-1T3AT (= KCTC 52004T = JCM 31991T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号