首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes further improvements of coating fused silica capillaries with 2-hydroxyethyl methacrylate (HEMA) by atom transfer radical polymerization (ATRP). First, endcapping with a sterically less bulky silanyl reagent reduces the electrosmotic flow (EOF) by 25% in addition to the 40% EOF reduction caused by HEMA coating compared to a bare fused silica capillary. An additional hydrolysis step was introduced into the preparation of HEMA coated capillaries and leads to better reproducible migration times. The influence of the solvent during ATRP and the resulting polymer coating was investigated by replacement of DMF with water or water-methanol mixtures. The quality of the optimized coating was characterized by protein separations at pH 3. HEMA coated capillaries reveal up to 746000 plates. The polyvinyl alcohol (PVA) coated capillary provides only half of this efficiency. A long-term test at pH 9 shows good stability of the HEMA coated capillaries in basic medium. Also the numbers of plates in this medium was about 30% higher than for separations with the PVA capillary. In addition, the phosphate buffer was replaced by a volatile ammonium acetate buffer for later use with mass spectrometry (MS).  相似文献   

2.
The characterization of recombinant human growth hormone (rhGH; somatropin) by capillary electrophoresis (CE) with UV-absorbance and mass spectrometric (MS) detection using capillaries noncovalently coated with polybrene (PB) and poly(vinyl sulfonic acid) (PVS) is demonstrated. Compared with bare fused-silica capillaries, PB-PVS coated capillaries yielded more favorable migration-time reproducibilities and higher separation efficiencies. Optimal separation conditions for the bilayer-coated capillaries comprised a background electrolyte (BGE) of 400 mM Tris phosphate (pH 8.5) yielding migration-time R.S.D.s of less than 1.0% and plate numbers above 300,000 for intact rhGH. The protein was also analyzed using the CE method described in the European Pharmacopoeia (Ph. Eur.) monograph. The pharmacopoeial method gave much longer analysis times (22 min versus 8 min), lower resolution and plate numbers, and consecutive shifts in migration time for rhGH, indicating possible interactions between the protein and the inner capillary wall. Due to stable migration times obtained with the coated capillaries, reliable profiling and quantification of rhGH and its byproducts in time was possible. Analysis of thermally degraded rhGH revealed the formation of two main degradation products. CE-mass spectrometry (MS) of this sample, using a PB-PVS coated capillary and a BGE of 75 mM ammonium formate (pH 8.5), suggests that these products are desamido forms of rhGH. Analyses of expired rhGH preparations with CE-UV and CE-MS indicated the presence of both deamidation and oxidation products.  相似文献   

3.
The nature of the sieving matrix for DNA fragment separation is of immense importance in capillary and microchip electrophoresis. The chemical nature of the surface of the capillary or microchannel wall is equally as important, particularly with DNA electrophoresis where a substantial electroosmotic flow (EOF) may be detrimental to the separation. Although DNA analysis has been carried out successfully in both coated and uncoated capillaries, analysis of unpurified polymerase chain reaction products has been carried out primarily with covalently coated surfaces, especially with microchip electrophoresis. In this report, double-stranded (ds) DNA fragment analysis using hydroxyethylcellulose (HEC) buffered in 1xTris-borate-EDTA is demonstrated both in uncoated capillaries and in microchips. EOF was suppressed 20% in the presence of 1.5% HEC, and the effectiveness of HEC as a polymer for dsDNA fragment analysis was dependent on the pH, with pH 8.6 being optimal. Using separation efficiency (number of theoretical plates) and resolution to gauge the effectiveness of a variety of polymers for the capillary separation of dsDNA fragments in the size range 60-587bp, HEC was found to be comparable in performance to polydimethylacrylamide (PDMA), and superior to linear polyacrylamide and polyethylene oxide for DNA analysis. With respect to longevity and robust performance, HEC could be used effectively in an uncoated capillary for more than 40 runs and for more than 90 runs (without replenishing the polymer) in an uncoated microchip. Application of the optimized HEC conditions is demonstrated through its ability to facilitate heteroduplex analysis.  相似文献   

4.
A quick and reproducible capillary electrophoresis method was optimized and validated for the assay of bovine serum albumin (BSA). The effects of various parameters such as pH of buffer, concentration of buffer, capillary dimensions, use of coated capillaries, and additives such as surfactants and protein solubilizers were evaluated. The capillary coatings or additives did not give any advantage in reducing the surface adsorption of BSA on the capillary walls. The optimized conditions include use of borate buffer, pH 8.5 having a concentration of 150 mM in a 27 cm capillary with an aperture window of 100 x 200 microns for detection. The optimized method for the detection of BSA was validated. The interday and intraday coefficient of variation was not greater than 7.59% at BSA concentrations of 25-1000 micrograms/ml. The method developed was reproducible and accurate.  相似文献   

5.
Kim Y 《Biomacromolecules》2003,4(4):908-913
Different ash-forming biological materials such as gills of mushrooms, cotton wool, silk fiber, spider silk, dog's hair, and human hair were examined as templates to fabricate small structures. Ashes obtained from gills of mushrooms, silk fiber, and spider silk were miniaturized replicas of the original materials, whereas ashes from dog's hair and human hair were tubes. These materials were successfully coated with different inorganic materials by interface-selective sol-gel polymerization. Calcining coated materials yielded structures composed of ash and coated inorganic materials such as silica, titania, copper oxide, aluminum oxide, and iron oxide. Fully calcined ashes from native materials and materials coated with silica were usually 1/3 and 1/5 as large as their original materials, respectively. Silica-ash hybrid materials were much more rigid than ash materials. Incompletely calcined human hairs formed tubes with thick carbonized walls, and their inside morphologies suggested that medulla in human hairs might be responsible for tube formation. Preparation of complex tubular structures was possible as tied hairs did not break during calcination. Results in this study showed biological materials were useful as templates for fabricating inorganic structures regardless of ash formation.  相似文献   

6.
Strategies reported for the separation of proteins in capillary zone electrophoresis and capillary isoelectric focusing are reviewed. The strategies are grouped into two categories: coated capillaries and buffer/sample additives. Success attained with each case and also, more importantly, the limitations of the methodology are discussed. Recent results from our own laboratory in the area of capillary isoelectric focusing in uncoated, fused silica capillaries using additives are summarized. The advantages and disadvantages of coated columns vs. additives are delineated.  相似文献   

7.
Two capillary electrophoretic methods were developed and evaluated for measurement of glycated hemoglobin A1c (HbA1c). First, a capillary electrophoresis analysis is performed with a sodium tetraborate buffer (pH 9.3) as background electrolyte in a neutrally coated capillary. HbA1c is separated from HbA0 due to specific interactions of borate anions with the cisdiol pattern in the saccharide moiety of glycohemoglobin. Second, a capillary isoelectric focusing method, which exploits a difference in pI values of HbA0 and HbA1c, is performed with Servalyt pH 6–8 or alternatively with Biolyte pH 6–8 carrier ampholytes spiked with a narrow pH cut of pH 7.2 prepared by preparative fractionation of Servalyt pH 4–9 carrier ampholytes. Both methods reflect recent developments in the methodology of capillary electrophoresis. They allow quantifying HbA1c in generic capillary electrophoresis analyzer with specificity that is consistent with previously reported electrophoretic assays in slab gels and capillaries.  相似文献   

8.
A more-effective means of activating cellulose than hitherto reported has been devised for the abstraction of carbohydrates from solution. Cellulose coated with hydrous titanium(IV) oxide readily adsorbs branched polysaccharides such as glycogen (e.g. a coated cellulose containing 4.5% of titanium will adsorb 0.52 mg of glycogen/mg of titanium) and has a low affinity for monosaccharides. The hydrous oxide, as a dried powder, had a lower maximum adsorption (0.08 mg of glycogen and 0.02 mg ofd-glucose/mg of titanium) showing the beneficial effect of its coating on cellulose. Conversely, freshly-prepared hydrous titanium(IV) oxide, which had been neither washed nor dried had a greater maximum adsorption of glycogen (4.46 mg/mg of titanium whilst the generation of the hydrous oxide in solutions of glycogen further increased the maximum adsorption of glycogen (8.40 mg/mg of titanium). Magnetic iron oxide coated with hydrous titanium(IV) oxide retains all the adsorption properties of the freshly-prepared hydrous titanium(IV) oxide and improves the handling and sedimentation properties of the material, including its response to magnets.  相似文献   

9.
This study investigated methods of improving the separation and identification of an IgA antibody, McPC603, and its pepsin fragments. The problem presented by purification of antibody fragments (Fabs) and the antibody light chain required accurate and informative analysis of highly hydrophobic proteins, which can polymerize and fold to form secondary structures. Capillary zone electrophoresis (CZE) permits the separation of peptides and small proteins by a method which is orthogonal to the traditional method of reversed-phase HPLC. To facilitate planned studies of the antibody's biological activity, our buffer composition was kept as simple as possible. During CZE analysis, if the buffer pH is below the isoelectric point of the protein, or the protein is large (with a heterogeneous distribution of surface charges), it can irreversibly bind to the capillary wall unless the capillary is coated. We found that C1-coatings in RP-capillaries at pH 9.5 adequately prevented the antibody fragments from binding to the wall. However, the coating did not remain stable at such high pH, so different conditions were sought. We achieved adequate separations in several buffers at nearly physiological pH, in a bare silica capillary which had been coated once with a soluble cationic polymer coating (Micro-Coat applied during column conditioning). Antibody electropherograms changed depending on the type of inorganic buffer salt used in a separation. Phosphate binds to the antigen-binding site of the IgA with low affinity, and interesting effects were observed in separations using phosphate buffer. These effects will be discussed.  相似文献   

10.
Methods using automated capillary electrophoresis (CE) instrumentation are available for serum protein electrophoresis with monoclonal band quantitation, isoelectric focusing and sodium dodecyl sulphate-polyacrylamide gel electrophoresis separations. The advantages of CE over previous gel methods relate to the time and labour saved by the automated instrumentation. High pI monoclonal bands and cryoglobulin specimens can be successfully analysed by CE. However, if the CE application uses a standard company supplied kit, then the cost savings are often negated by the high cost of the kit. Improvements such as the inclusion of both a UV-Vis as well as a fluorescence detector as standard within the one commercial instrument, the production of coated IEF capillaries with a useful life of at least 100 samples, and the introduction of a capillary array into all commercial instrumentation would ensure greater use of CE within both the clinical and other protein laboratories.  相似文献   

11.
Atomic force microscopy (AFM) has been used to probe the surface of a capillary after coating with “soft” polymers, notably polyacrylamides. The aim was the investigation of the efficiency of coverage of the silica surface, so as to reduce or eliminate the electroosmotic flow (EOF), particularly noxious in the separation of macromolecules. The quality of such coating is strongly dependent on two variables: temperature and pH. In the first case, progressively higher temperatures produce open silica patches, where no polymer seems to be bound. The transition from coated to largely uncoated surfaces occurs at 50°C. Also the pH of the polymerizing solution strongly affects the coating efficiency. Since in all coating procedures the monomer solution is not buffered, addition of accelerator (TEMED, N,N,N′N′-tetramethylethylendiamine) induces polymer growth at pH 10–11. These pH values generate hydrolysis of the siloxane bridge anchoring the bifunctional agent (Bind Silane, onto which the polymer chain should grow) to the wall. Thus, coating and de-coating occur simultaneously. Low temperatures during polymer growth (typically 10°C) and buffered solutions (pH 7, titrated after TEMED addition) ensure a most efficient and thorough coating, with virtual elimination of EOF: well coated capillaries exhibit residual EOF values, at pH 10, of the order of 10−7 cm2 V−1 s−1 vs. a standard value for uncoated capillaries of the order of 10−4 cm2 V−1 s−1. The AFM data have been fully confirmed by direct measurement of EOF in coated and uncoated capillaries under an electric field.  相似文献   

12.
Isoelectric focusing (IEF) in thin capillaries is reviewed here. After an introduction on the genesis and chemistry of the carrier ampholyte buffers, different approaches to IEF are discussed and evaluated. The classical approach consists on IEF under conditions of suppressed electroosmotic (EOF) flow, usually obtained by covalently bonding hydrophilic polymers to the inner capillary wall. The other approach consists of IEF in dynamically (and partially) coated capillaries, so as to allow a reduced EOF flow to coexist with the IEF process, so that focusing and transport of the train of stacked bands occurs simultaneously. The various experimental parameters: focusing, elution and detection steps, pI measurements, as well as typical drawbacks, such as isoelectric precipitation are evaluated. The review ends with some examples of analytical separations, at the moment mostlyl limited to focusing of native hemoglobins (normal and point mutants). These separations are compared with those obtained by slab-gel IEF and in immobilized pH gradients.  相似文献   

13.
The effect of Group I and II metal ions on electroosmotic flow in capillary electrophoresis in fused-silica capillaries is characterized. The electroosmotic mobility of aqueous mobile phases of lithium, sodium, potassium, calcium and barium acetates in fused-silica capillaries is measured as a function of pH at constant voltage. Cross contamination is avoided by using separate columns for each study and pH control is maintained with the aid of He sparging. The shape of a plot of pH vs. electroosmotic mobility depends on the particular cation used which in turn depends on the surface sorption properties of the ions. Column history is demonstrated to have an effect on electroosmotic flow and therefore retention times. The resolution of a test mixture is optimal in the lithium-based buffer.  相似文献   

14.
Various methods are used to enrich or purify a protein of interest from other proteins and components in a crude cell lysate or other sample. One of the most powerful methods is affinity purification, also called affinity chromatography, whereby the proteins of interest are purified by virtue of their specific binding properties to an immobilized ligand. Affinity purification is becoming more widely used for exploring post-translation modifications and protein-protein interactions, especially with a view toward developing new general tag systems and strategies of chemical derivatization on peptides for affinity selection. Our work was aimed to immobilize proteins or ligands for affinity purification of antibodies, fusion-tagged proteins and other proteins and peptides. Selected proteins or peptides are efficiently extracted and enriched using chemically derivatized walls of a fused silica capillary column. In this paper, we present an open tubular capillary, where the inner wall of a fused silica capillary was derivatized by covalent binding of modified polystyrene latex particles. The capillaries were derivatized with iminodiacetic acid and loaded with Fe3+ or Ni2+ for the purification and enrichment of phosphopeptides or His-tagged proteins, respectively. The latex coated capillaries have been successfully applied to enrich phosphopeptides from beta-casein tryptic digest and ovalbumin tryptic digest at a micro volume scale with recoveries ranging from 92 to 95%. The capillaries have been eluted under conditions compatible with MALDI-MS without any prior desalting step. In another approach, concanavalin A (Con A) or Protein G were immobilized on the epoxy modified latex on the inner wall of the fused silica capillary for the purification of glycoproteins and immunoglobulin, respectively. The design of the capillary and the protocols used for purification permits the direct detection of eluted proteins and peptides with gel electrophoresis or with mass spectrometry. The elution volumes are passed as discrete segments of few microliters over the inner surface of the open-tube capillary, achieving enrichment factors of more than 20-fold from starting samples.  相似文献   

15.
A novel noncovalently bilayer-coated capillary using cationic polymer polybrene (PB) and anionic polymer (sodium 4-styrenesulfonate) (PSS) as coatings was prepared. This PB–PSS coating showed good migration-time reproducibility for proteins and high stability in the range of pH 2–10 and in the presence of 1 M NaOH, acetonitrile and methanol. Capillary electrophoresis with PB–PSS coated capillaries was successfully applied to quantitatively investigate the stability of bovine serum albumin, ovomucoid, β-lactoglobulin and lysozyme in simulated gastrointestinal fluids. β-lactoglobulin A and β-lactoglobulin B were both stable in simulated gastric fluid with degradation percentages of 34.3% and 17.2% after 60 min of incubation, respectively. Bovine serum albumin, ovomucoid and lysozyme were stable in simulated intestinal fluid with degradation percentages of 17.7%, 23.4% and 22.8% after 60 min of incubation, respectively. The superiority of the proposed method over sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and capillary electrophoresis with untreated fused silica capillaries was demonstrated and emphasized.  相似文献   

16.
Quantitative Aspects of the M Protein Capillary Precipitin Test   总被引:6,自引:1,他引:5       下载免费PDF全文
A capillary procedure for quantitatively determining M protein is described. Capillaries were filled with measured amounts of serum and streptococcal extract. The capillaries were incubated, and then centrifuged to pack the precipitates. The relative sizes of the precipates were compared by a determination of the weights of their paper images (obtained by reflection from a microscope). Meaningful dilution curves were determined by this method. Variations of pH from 6 to 8 had little effect on the M protein precipitin test, and the test was not seriously affected by variations of the NaCl concentration from 0.85 to 4.67%. The addition of divalent ions (Ca(++) and Mg(++)) did not influence the results. This test can be used to make quantitative comparisons of M protein preparations and to titrate type-specific antisera.  相似文献   

17.
An electrochromatographic method was developed for the in situ delipidation of intact low-density lipoprotein (LDL) particles immobilized on the inner wall of a 50-μm inner diameter silica capillary. In this method, the immobilized LDL particles were delipidated with nonionic surfactant Nonidet P-40 at pH 7.4 and 25 °C, resulting in an apolipoprotein B-100 (apoB-100)-coated capillary surface. The mobility of the electroosmotic flow marker dimethyl sulfoxide gave information about the surface charge, and the retention factors of β-estradiol, testosterone, and progesterone were informative of the surface hydrophobicity. The calculated distribution coefficients of the steroids produced specific information about the affinity interactions of the steroids, with capillary surfaces coated either with intact LDL particles or with apoB-100. Delipidation with Nonidet P-40 resulted in a strong decrease in the hydrophobicity of the LDL coating. Atomic force microscopy images confirmed the loss of lipids from the LDL particles and the presence of apoB-100 protein coating. The in situ delipidation of LDL particles in capillaries represents a novel approach for the isolation of immobilized apoB-100 and for the determination of its pI value. The technique requires extremely low quantities of LDL particles, and it is simple and fast.  相似文献   

18.
Blood–Brain Barrier Protein and Phosphorylation and Dephosphorylation   总被引:1,自引:0,他引:1  
Capillaries in vertebrate brain have unique permeability properties that make up the blood-brain barrier (BBB). Although it is known that capillaries are innervated by nerve endings of intracerebral origin and that brain capillary function is likely acutely regulated by neuronal inputs, the possible mechanisms of neuronal regulation of capillary function are at present unknown. One possible mode of regulation is via the phosphorylation of brain capillary proteins. The present studies characterize, for the first time, the major phosphoproteins in the bovine brain capillary using both intact bovine brain capillaries and plasma membrane fractions from bovine brain capillaries. The patterns of endogenous phosphorylation of capillary proteins are compared to similar patterns obtained with synaptosomal (P2) fractions from bovine brain. The major findings of this study are: (a) The activity of protein phosphorylation in brain capillaries is localized almost exclusively to the capillary plasma membrane, and is nearly comparable to the activity of protein phosphorylation in synaptosomal membranes. (b) A major phosphoprotein doublet in the capillary fraction comigrates on a sodium dodecyl sulfate gel with a major phosphoprotein doublet of approximate molecular weight of 80K in the synaptosomal fraction, and the latter is presumed to be synapsin I; in dephosphorylation assays the synaptosomal 80K phosphoprotein doublet is not subject to measurable dephosphorylation, whereas the capillary 80K doublet is subject to rapid dephosphorylation, and is essentially completely dephosphorylated within 5 s at 0 degrees C. (c) A prominent triplet of phosphoproteins with molecular weight of 50-55K is present in the capillary fraction, and is not present in the synaptosomal fraction; thus, this 50-55K triplet of phosphoproteins appears specific for brain capillaries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In this work we present the development of a multi-analyte immunosensor for the determination of follitropin, human chorionic gonadotropin and prolactin in human serum. The immunosensor is based on plastic capillaries. According to the methodology, discrete areas of the internal capillary surface are coated with different antibodies, which are highly specific for each one of the analytes to be determined. The sample that will be analyzed along with a mixture of analyte-specific biotinylated antibodies is introduced into the capillary. The coated and the detection antibodies react with different epitopes of the analytes in the sample to form a 'sandwich'. The detection is based on reaction of the immobilized biotinylated antibody with streptavidin labeled with R-phycoerythrin. The fluorescent areas formed were quantified by scanning the capillary with a light beam of appropriate wavelength. A light sensor placed at the end of the capillary detects the emitted photons, that are trapped and waveguided into the capillary walls. The multi-analyte immunosensor assays were characterized by high specificity and short analysis time. In addition, the results obtained by the multi-analyte optical capillary immunosensor were comparable to those obtained by immunofluorimetric assays performed in microtitration wells. Potential applications of the proposed immunosensor include determination of several analyte panels in a broad spectrum of disciplines such as endocrinology, hematology, and oncology.  相似文献   

20.
Metals exposed to rapidly flowing seawater are fouled by microbes that increase heat transfer resistance. In this study, results of biochemical test methods quantitatively relating the biomass and community structure of the microfouling film on aluminum and titanium to heat transfer resistance across the metal surface during three cycles of free fouling and manual brushing showed that cleaning accelerates the rate of fouling measured as the loss of heat transfer efficiency and as microfouling film biomass. The results also showed that the rate of fouling, measured as an increase in heat transfer resistance, is faster on titanium than on aluminum but that the titanium surface is more readily cleaned. In three cycles of free fouling and cleaning with a stiff-bristle nylon brush, the free-fouling communities re-forming on aluminum became enriched in bacteria containing short-branched fatty acids as the cycling progressed. The free-fouling community on titanium revealed an increasingly diverse morphology under scanning electron microscopy that was enriched in a portion of the microeucaryotes. Brushing removed most of the biomass, but left a residual community that was relatively enriched in a portion of the bacterial assembly containing cyclopropane fatty acids on aluminum and in a more diverse community on the titanium surface. The residual communities left after cleaning of titanium revealed an increase in bacteria with short-branched fatty acids and in microeucaryotes as cleaning continued. No significant changes occurred in the residual microbial community structure left on aluminum with cleaning; it was, again, less diverse than that remaining on titanium. The residual communities secreted a twofold-larger amount of extracellular polymer, measured as the ratio of total organic carbon to lipid phosphate, than did the free-fouling community on both surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号