首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbivores with polyphagous feeding habits must cope with a diet that varies in quality. One of the most important sources of this variation in host plant suitability is plant secondary chemistry. We examined how feeding on plants containing one such group of compounds, the iridoid glycosides, might affect the growth and enzymatic activity in a polyphagous caterpillar that feeds on over 80 plant species in 50 different families. Larvae of the polyphagous arctiid, Grammia incorrupta, were reared exclusively on one of two plant species, one of which contains iridoid glycosides (Plantago lanceolata, Plantaginaceae) while the other does not (Taraxacum officinale, Asteraceae). Larval weight was measured on the two host plants, and midgut homogenates of last instar larvae were then assayed for activity and kinetic properties of β-glucosidases, using both a standard substrate, 4-nitrophenyl-β-D-glucose (NPβGlc), and the iridoid glycoside aucubin, one of the two main iridoid glycosides in P. lanceolata. Larvae feeding on P. lanceolata weighed significantly less and developed more slowly compared to larvae on T. officinale. While the larval midgut β-glucosidase activity determined with NPβGlc was significantly decreased when fed on P. lanceolata, aucubin was substantially hydrolyzed and the larval β-glucosidase activity towards both substrates correlated negatively with larval weight. Our results demonstrate that host plants containing high concentrations of iridoid glycosides have a negative impact on larval development of this generalist insect herbivore. This is most likely due to the hydrolysis of plant glycosides in the larval midgut which results in the release of toxic aglycones. Linking the reduced larval weight to the toxin-releasing action of an iridoid glycoside cleaving β-glucosidase, our results thus support the detoxification limitation hypothesis, suggesting fitness costs for the larvae feeding solely on P. lanceolata. Thus, in addition to the adaptive regulation of midgut β-glucosidase activity, host plant switching as a behavioral adaptation might be a prerequisite for generalist herbivores that allows them to circumvent the negative effects of plant secondary compounds.  相似文献   

2.
Iridoid glycosides are plant defence compounds with potentially detrimental effects on non-adapted herbivores. Some plant species possess β-glucosidases that hydrolyse iridoid glycosides and thereby release protein-denaturing aglycones. To test the hypothesis that iridoid glycosides and plant β-glucosidases form a dual defence system, we used Plantago lanceolata and a polyphagous caterpillar species. To analyse the impact of leaf-age dependent differences in iridoid glycoside concentrations and β-glucosidase activities on insect performance, old or young leaves were freeze-dried and incorporated into artificial diets or were provided freshly to the larvae. We determined larval consumption rates and the amounts of assimilated nitrogen. Furthermore, we quantified β-glucosidase activities in artificial diets and fresh leaves and the amount of iridoid glycosides that larvae feeding on fresh leaves ingested and excreted. Compared to fresh leaves, caterpillars grew faster on artificial diets, on which larval weight gain correlated positively to the absorbed amount of nitrogen. When feeding fresh young leaves, larvae even lost weight and excreted only minute proportions of the ingested iridoid glycosides intact with the faeces, indicating that the hydrolysis of these compounds might have interfered with nitrogen assimilation and impaired larval growth. To disentangle physiological effects from deterrent effects of iridoid glycosides, we performed dual choice feeding assays. Young leaves, their methanolic extracts and pure catalpol reduced larval feeding in comparison to the respective controls, while aucubin had no effect on larval consumption. We conclude that the dual defence system of P. lanceolata consisting of iridoid glycosides and β-glucosidases interferes with the nutrient utilisation via the hydrolysis of iridoid glycosides and also mediates larval feeding behaviour in a concentration- and substance-specific manner.  相似文献   

3.
Diet of herbivorous insects can influence both the herbivores and their natural enemies. We examined the direct and indirect effects of diet on the interactions between the polyphagous herbivore Trichoplusia ni Hübner (Lepidoptera: Noctuidae) and its polyembryonic parasitoid Copidosoma floridanum Ashmead (Hymenoptera: Encyrtidae). To determine how host plant species and host plant iridoid glycoside content affect host caterpillars and their parasitoids, parasitized and unparasitized T. ni were given leaves of either Plantago lanceolata L., which contains the iridoid glycosides aucubin and catalpol, Plantago major L. (Plantaginaceae), which contains only aucubin, or Taraxacum officinale F.H. Wigg (Asteraceae), which contains neither. Survival of unparasitized T. ni was much lower when fed P. major compared with the other two host plants, whereas pupae were smallest when fed T. officinale and developed most slowly when fed P. lanceolata as larvae. Neither aucubin nor catalpol were detected in intact Plantago‐fed T. ni larvae or their hemolymph, and only trace amounts of aucubin were detected in frass, suggesting that these compounds are mostly metabolized in the midgut and are not encountered by the parasitoid. Copidosoma floridanum clutch size was almost doubled when reared from P. lanceolata‐fed T. ni compared with T. officinale‐fed larvae and tripled compared with P. major‐fed larvae, although the percent of parasitoids surviving to adulthood was uniformly high regardless of host diet. The observed variation in C. floridanum fitness among host diets is likely mediated by the effect of the diets on host quality, which in turn may be influenced more by other factors in the host plants than their iridoid glycoside profiles. Interactions between plant metabolites, generalist herbivores like T. ni, and their parasitoids may be predominantly indirect.  相似文献   

4.
Herbivorous insects have more difficulty obtaining proteins from their food than do predators and parasites. The scarcity of proteins in their diet requires herbivores to feed voraciously, thus heavily damaging their host plants. Plants respond to herbivory by producing defense compounds, which reduce insect growth, retard development, and increase mortality. Herbivores use both pre- and postdigestive response mechanisms to detect and avoid plant defense compounds. Proteinase inhibitors (PIs) are one example of plant compounds produced as a direct defense against herbivory. Many insects can adapt to PIs when these are incorporated into artificial diets. However, little is known about the effect of PIs on diet choice and feeding behavior. We monitored the diet choice, life-history traits, and gut proteinase activity of Helicoverpa armigera larvae using diets supplemented with synthetic and natural PIs. In choice experiments, both neonates and fourth-instar larvae preferred the control diet over PI-supplemented diets, to varying degrees. Larvae that fed on PI-supplemented diets weighed less than those that fed on the control diet and produced smaller pupae. Trypsin-specific PIs had a stronger effect on mean larval weight than did other PIs. A reduction of trypsin activity but not of chymotrypsin activity was observed in larvae fed on PI-supplemented diets. Therefore, behavioral avoidance of feeding on plant parts high in PIs could be an adaptation to minimize the impact of this plant's defensive strategy.  相似文献   

5.
Iridoid glycosides are secondary plant compounds that have deterrent, growth reducing or even toxic effects on non-adapted herbivorous insects. To investigate the effects of iridoid glycoside containing plants on the digestive metabolism of a generalist herbivore, larvae of Spilosoma virginica (Lepidoptera: Arctiidae) were reared on three plant species that differ in their secondary plant chemistry: Taraxacum officinale (no iridoid glycosides), Plantago major (low iridoid glycoside content), and P. lanceolata (high iridoid glycoside content). Midguts of fifth instar larvae were assayed for the activity and kinetic properties of β-glucosidase using different substrates. Compared to the larvae on T. officinale, the β-glucosidase activity of larvae feeding on P. lanceolata was significantly lower measured with 4-nitrophenyl-β-d-glucopyranoside. Using the iridoid glycoside aucubin as a substrate, we did not find differences in the β-glucosidase activity of the larvae reared on the three plants. Heat inactivation experiments revealed the existence of a heat-labile and a more heat-stable β-glucosidase with similar Michaelis constants for 4-nitrophenyl-β-d-glucopyranoside. We discuss possible mechanisms leading to the observed decrease of β-glucosidase activity for larvae reared on P. lanceolata and its relevance for generalist herbivores in adapting to iridoid glycoside containing plant species and their use as potential host plants.  相似文献   

6.
Host plant chemical composition critically shapes the performance of insect herbivores feeding on them. Some insects have become specialized on plant secondary metabolites, and even use them to their own advantage such as defense against predators. However, infection by plant pathogens can seriously alter the interaction between herbivores and their host plants. We tested whether the effects of the plant secondary metabolites, iridoid glycosides (IGs), on the performance and immune response of an insect herbivore are modulated by a plant pathogen. We used the IG‐specialized Glanville fritillary butterfly Melitaea cinxia, its host plant Plantago lanceolata, and the naturally occurring plant pathogen, powdery mildew Podosphaera plantaginis, as model system. Pre‐diapause larvae were fed on P. lanceolata host plants selected to contain either high or low IGs, in the presence or absence of powdery mildew. Larval performance was measured by growth rate, survival until diapause, and by investment in immunity. We assessed immunity after a bacterial challenge in terms of phenoloxidase (PO) activity and the expression of seven pre‐selected insect immune genes (qPCR). We found that the beneficial effects of constitutive leaf IGs, that improved larval growth, were significantly reduced by mildew infection. Moreover, mildew presence downregulated one component of larval immune response (PO activity), suggesting a physiological cost of investment in immunity under suboptimal conditions. Yet, feeding on mildew‐infected leaves caused an upregulation of two immune genes, lysozyme and prophenoloxidase. Our findings indicate that a plant pathogen can significantly modulate the effects of secondary metabolites on the growth of an insect herbivore. Furthermore, we show that a plant pathogen can induce contrasting effects on insect immune function. We suspect that the activation of the immune system toward a plant pathogen infection may be maladaptive, but the actual infectivity on the larvae should be tested.  相似文献   

7.
Aposematic herbivores are under selection pressure from their host plants and predators. Although many aposematic herbivores exploit plant toxins in their own secondary defense, dealing with these harmful compounds might underlay costs. We studied whether the allocation of energy to detoxification and/or sequestration of host plant defense chemicals trades off with warning signal expression. We used a generalist aposematic herbivore Parasemia plantaginis (Arctiidae), whose adults and larvae show extensive phenotypic and genetic variation in coloration. We reared larvae from selection lines for small and large larval warning signals on Plantago lanceolata with either low or high concentration of iridoid glycosides (IGs). Larvae disposed of IGs effectively; their body IG content was low irrespective of their diet. Detoxification was costly as individuals reared on the high IG diet produced fewer offspring. The IG concentration of the diet did not affect larval coloration (no trade-off) but the wings of females were lighter orange (vs. dark red) when reared on the high IG diet. Thus, the difference in plant secondary chemicals did not induce variation in the chemical defense efficacy of aposematic individuals but caused variation in reproductive output and warning signals of females.  相似文献   

8.
This study investigates complex effects of parasitoid infection on herbivore diet choice. Specifically, we examine how immunological resistance, parasitoid infection stage, and parasitoid taxonomic identity affect the pharmacophagous behavior of the polyphagous caterpillar, Grammia incorrupta (Arctiidae). Using a combination of lab and field experiments, we test the caterpillar’s pharmacophagous response to pyrrolizidine alkaloids (PAs) over the course of parasitoid infection, as well as the effect of dietary PAs on the caterpillar’s immunological response. Previous work from other systems gave the prediction that dietary PAs would be detrimental to the immune response and thus less acceptable to feeding early in the infection, when encapsulation of the parasitoid is most crucial. We found that the feeding acceptability of PAs was indeed low for caterpillars with early-stage parasitoid infections; however, this was not explained by PA interference with immune function. When allowed to choose among three host plant species, individuals harboring early-stage parasitoids increased their consumption of a nutritious plant containing antioxidants. This result was driven by wasp-parasitized caterpillars, whereas fly-parasitized caterpillars increased their consumption of plants containing iridoid glycosides. Individuals in the later time phase of infection exhibited an increase in PA intake that was consistent with previously reported self-medication behavior during late-stage parasitoid infection. This study reveals the depth of complexity and the dynamic nature of herbivore host plant choice, and underscores the importance of considering multitrophic interactions when studying insect diet choice.  相似文献   

9.
Iridoid glycosides are plant defence compounds that are deterrent and/or toxic for unadapted herbivores but are readily sequestered by dietary specialists of different insect orders. Hydrolysis of iridoid glycosides by β‐glucosidase leads to protein denaturation. Insect digestive β‐glucosidases thus have the potential to mediate plant–insect interactions. In the present study, mechanisms associated with iridoid glycoside tolerance are investigated in two closely‐related leaf beetle species (Coleoptera: Chrysomelidae) that feed on iridoid glycoside containing host plants. The polyphagous Longitarsus luridus Scopoli does not sequester iridoid glycosides, whereas the specialist Longitarsus tabidus Fabricius sequesters these compounds from its host plants. To study whether the biochemical properties of their β‐glucosidases correspond to the differences in feeding specialization, the number of β‐glucosidase isoforms and their kinetic properties are compared between the two beetle species. To examine the impact of iridoid glycosides on the β‐glucosidase activity of the generalist, L. luridus beetles are kept on host plants with or without iridoid glycosides. Furthermore, β‐glucosidase activities of both species are examined using an artificial β‐glucosidase substrate and the iridoid glycoside aucubin present in their host plants. Both species have one or two β‐glucosidases with different substrate affinities. Interestingly, host plant use does not influence the specific β‐glucosidase activities of the generalist. Both species hydrolyse aucubin with a much lower affinity than the standard substrate. The neutral pH reduces the β‐glucosidase activity of the specialist beetles by approximately 60% relative to its pH optimum. These low rates of aucubin hydrolysis suggest that the ability to sequester iridoid glycosides has evolved as a key to potentially preventing iridoid glycoside hydrolysis by plant‐derived β‐glucosidases.  相似文献   

10.
Foggo A  Higgins S  Wargent JJ  Coleman RA 《Oecologia》2007,154(3):505-512
In this paper we demonstrate a UV-B-mediated link between host plants, herbivores and their parasitoids, using a model system consisting of a host plant Brassica oleracea, a herbivore Plutella xylostella and its parasitoid Cotesia plutellae. Ultraviolet-B radiation (UV-B) is a potent elicitor of a variety of changes in the chemistry, morphology and physiology of plants and animals. Recent studies have demonstrated that common signals, such as jasmonic acid (JA), play important roles in the mechanisms by which plants respond to UV-B and to damage by herbivores. Plant responses elicited by UV-B radiation can affect the choices of ovipositing female insects and the fitness of their offspring. This leads to the prediction that, in plants, the changes induced as a consequence of UV damage will be similar to those elicited in response to insect damage, including knock-on effects upon the next trophic level, predators. In our trials female P. xylostella oviposited preferentially on host plants grown in depleted UV-B conditions, while their larvae preferred to feed on tissues from UV-depleted regimes over those from UV-supplemented ones. Larval feeding patterns on UV-supplemented tissues met the predictions of models which propose that induced defences in plants should disperse herbivory; feeding scars were significantly smaller and more numerous – though not significantly so – than those on host plant leaves grown in UV-depleted conditions. Most importantly, female parasitoids also showed a clear pattern of preference when given the choice between host plants and attendant larvae from the different UV regimes; however, in the case of the female parasitoids, the choice was in favour of potential hosts foraging on UV-supplemented tissues. This study demonstrates the potential for UV-B to elicit a variety of interactions between trophic levels, most likely mediated through effects upon host plant chemistry.  相似文献   

11.
Defensive chemicals produced by plants can travel up the food chain by being sequestered by herbivores, and then in turn being sequestered by their parasitoids. Insect species with wide host ranges are predicted to perform poorly in the face of specific chemical defence. However, a species at a high trophic level is expected to have a wide host range. This creates a conflict for hyperparasitoids, many of which depend on specialized hosts. We studied the performance of two hyperparasitoids, Lysibia nana and Gelis agilis, both of which have wide host ranges, on two host species, one chemically defended and the other not. We predicted that both hyperparasitoids would perform better using the undefended host Cotesia glomerata than the defended host C. melitaearum, which sequesters terpenoid allelochemicals (iridoid glycosides). Furthermore, we expected that the progeny of G. agilis collected from an area where hosts defended by iridoid glycosides are absent (the Netherlands) would perform poorly using C. melitaearum in comparison with G. agilis collected from an area where C. melitaearum is a common host (Åland, Finland). In a series of laboratory experiments we found that, contrary to prediction, both hyperparasitoids performed well on both hosts, reaching a larger size on C. glomerata, but having a higher conversion efficiency and developing more quickly on the chemically defended C. melitaearum. Lysibia nana metabolized the plant derived iridoid glycosides, which are chemicals that it does not normally encounter. Gelis agilis retained some of the iridoid glycosides. But whereas Finnish G. agilis retained both aucubin and catalpol, Dutch G. agilis mainly retained aucubin, illustrating that though generalists, local populations still cope differently with toxic allelochemicals.  相似文献   

12.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

13.
The presence of extrafloral nectaries (EFNs) attracts predators and parasitoids, and protects the plant against herbivorous insects. By improving plant defences, EFNs reduce the fitness of herbivores. The use of similar host plants with no EFNs or adaptations in response to predators and parasitoids may enhance herbivore fitness. In this context, we studied the feeding habit (on leaves or on unripe seeds inside the pods) of larvae of the specialist moth Utetheisa ornatrix in two Crotalaria host plant species in which EFNs are present (C. micans) or absent (C. paulina). We hypothesized that the moths’ feeding habit was influenced by its natural enemies via their presence on EFNs. In C. micans, we found more larvae feeding inside the pods rather than on the leaves, while in C. paulina, larvae were found in both parts of the plant. There was greater activity of natural enemies in C. micans than in C. paulina. The moth sequesters enough pyrrolizidine alkaloid (PAs) to defend against predators in the leaves and seeds of C. paulina, but only in seeds of C. micans. Therefore, a change in the feeding habit in U. ornatrix larvae is a plastic response that depends on whether EFNs are present or not, or whether PA concentrations are low or high. This change does not affect overall moth performance. However, other factors, such as pod hardness, predation by organisms other than those visiting EFNs or even parasitoids cannot be ruled out as being responsible for the change in feeding habit. To date, both the EFNs and PAs in Crotalaria species are a parsimonious explanation of how larvae of U. ornatrix use different species of Crotalaria for feeding.  相似文献   

14.
We investigated in eight species of the flea beetles genus Longitarsus (Coleoptera, Chrysomelidae) whether the beetles take up iridoid glycosides from their host plants of the Lamiaceae, Plantaginaceae, and Scrophulariaceae. Five of the beetle species, L. australis, L. lewisii, L. melanocephalus, L. nigrofasciatus, and L. tabidus, could be shown to sequester iridoid glycosides in concentrations between 0.40 and 1.55% of their dry weight. Eight different iridoid glycosides, acetylharpagide, ajugol, aucubin, catalpol, 8-epi-loganic acid, gardoside, geniposidic acid, and harpagide could be identified in the host plants, yet only aucubin and catalpol are sequestered by the beetles. No iridoid glycosides could be detected in the beetles if neither aucubin nor catalpol were present in the host plant, as in L. minusculus on Stachys recta (acetylharpagide only) and in L. salviae on Salvia pratensis (no iridoid glycosides). In one beetle species, L. luridus, we could not detect any iridoid glycosides although its field host, Plantago lanceolata, had considerable amounts of aucubin and catalpol plus two further iridoids. The five sequestering Longitarsus species differ in their capacity to store the compounds and in their affinity for catalpol relative to aucubin.  相似文献   

15.
Parasitoid load affects plant fitness in a tritrophic system   总被引:2,自引:0,他引:2  
Plants attacked by herbivorous insects emit volatile compounds that attract predators or parasitoids of the herbivores. Plant fitness increases when these herbivorous insects are parasitized by solitary parasitoids, but whether gregarious koinobiont parasitoids also confer a benefit to plant fitness has been disputed. We investigated the relationship between parasitoid load of the gregarious Cotesia glomerata (L.) (Hymenoptera: Braconidae), food consumption by larvae of their host Pieris brassicae L. (Lepidoptera: Pieridae), and seed production in a host plant, Brassica nigra L. (Brassicaceae), in a greenhouse experiment. Plants damaged by caterpillars containing single parasitoid broods produced a similar amount of seeds as undamaged control plants and produced significantly more seeds than plants with unparasitized caterpillars feeding on them. Increasing the parasitoid load to levels likely resulting from superparasitization, feeding by parasitized caterpillars was significantly negatively correlated with plant seed production. Higher parasitoid brood sizes were negatively correlated with pupal weight of Cotesia glomerata , revealing scramble competition leading to a fitness trade-off for the parasitoid. Our results suggest that in this tritrophic system plant fitness is higher when the gregarious parasitoid deposits a single brood into its herbivorous host. A prediction following from these results is that plants benefit from recruiting parasitoids when superparasitization is prevented. This is supported by our previous results on down-regulation of synomone production when Brassica oleracea was fed on by parasitized caterpillars of P. brassicae . We conclude that variable parasitoid loads in gregarious koinobiont parasitoids largely explain existing controversies about the putative benefit of recruiting these parasitoids for plant reproduction.  相似文献   

16.
Abstract 1. Variation in plant chemistry does not only mediate interactions between plants and herbivores but also those between herbivores and their natural enemies, and plants and natural enemies. 2. Endophytic fungi complete their whole life cycle within the host plant’s tissue and are associated with a large diversity of plant species. Endophytes of the genus Neotyphodium alter the chemistry of the host plant by producing herbivore toxic alkaloids. 3. Here we asked whether the endophyte‐tolerant aphid species Metopolophium festucae could be defended against its parasitoid Aphidius ervi when feeding on endophyte‐infected plants. In a laboratory experiment, we compared life‐history traits of A. ervi when exposed to hosts on endophyte‐infected or endophyte‐free Lolium perenne. 4. The presence of endophytes significantly increased larval and pupal development times, but did not affect the mortality of immature parasitoids or the longevity of the adults. Although the number of parasitoid mummies tended to be reduced on endophyte‐infected plants, the number of emerging parasitoids did not differ significantly between the two treatments. 5. This shows that the metabolism of individual aphids feeding on infected plants may be changed and help in the defence against parasitoids. An increase in parasitoid development time should ultimately reduce the population growth of A. ervi. Therefore, endophyte presence may represent an advantage for endophyte‐tolerant aphid species through extended parasitoid development and its effect on parasitoid population dynamics.  相似文献   

17.
The mechanisms through which trophic interactions between species are indirectly mediated by distant members in a food web have received increasing attention in the field of ecology of multitrophic interactions. Scarcely studied aspects include the effects of varying plant chemistry on herbivore immune defences against parasitoids. We investigated the effects of constitutive and herbivore-induced variation in the nutritional quality of wild and cultivated populations of cabbage (Brassica oleracea) on the ability of small cabbage white Pieris rapae (Lepidoptera, Pieridae) larvae to encapsulate eggs of the parasitoid Cotesia glomerata (Hymenoptera, Braconidae). Average encapsulation rates in caterpillars parasitised as first instars were low and did not differ among plant populations, with caterpillar weight positively correlating with the rates of encapsulation. When caterpillars were parasitised as second instar larvae, encapsulation of eggs increased. Caterpillars were larger on the cultivated Brussels sprouts plants and exhibited higher levels of encapsulation compared with caterpillars on plants of either of the wild cabbage populations. Observed differences in encapsulation rates between plant populations could not be explained exclusively by differences in host growth on the different Brassica populations. Previous herbivore damage resulted in a reduction in the larval weight of subsequent herbivores with a concomitant reduction in encapsulation responses on both Brussels sprouts and wild cabbage plants. To our knowledge this is the first study demonstrating that constitutive and herbivore-induced changes in plant chemistry act in concert, affecting the immune response of herbivores to parasitism. We argue that plant-mediated immune responses of herbivores may be important in the evaluation of fitness costs and benefits of herbivore diet on the third trophic level.  相似文献   

18.
Plant chemical defenses can negatively affect insect herbivore fitness, but they can also decrease herbivore palatability to predators or decrease parasitoid fitness, potentially changing selective pressures on both plant investment in production of chemical defenses and host feeding behavior. Larvae of the fern moth Herpetogramma theseusalis live in and feed upon leaf shelters of their own construction, and their most abundant parasitoid Alabagrus texanus oviposits in early instar larvae, where parasitoid larvae lay dormant for most of host development before rapidly developing and emerging just prior to host pupation. As such, both might be expected to live in a relatively constant chemical environment. Instead, we find that a correlated set of phenolic compounds shows strong seasonal variation both within shelters and in undamaged fern tissue, and the relative level of these compounds in these two different fern tissue types switches across the summer. Using experimental feeding treatments, in which we exposed fern moth larvae to different chemical trajectories across their development, we show that exposure to this set of phenolic compounds reduces the survival of larvae in early development. However, exposure to this set of compounds just before the beginning of explosive parasitoid growth increased parasitoid survival. Exposure during the period of rapid parasitoid growth and feeding decreased parasitoid survival. These results highlight the spatial and temporal complexity of leaf shelter chemistry, and demonstrate the developmental contingency of associated effects on both host and parasitoid, implying the existence of complex selective pressures on plant investment in chemical defenses, host feeding behavior, and parasitoid life history.  相似文献   

19.
  1. Plant‐herbivore coevolutionary interactions have led to a range of plant defenses that minimize insect damage and a suite of counter adaptations that allow herbivores to feed on defended plants. Consuming plant secondary compounds results in herbivore growth and developmental costs but can have beneficial effects such as deterrence or harm of parasitoid enemies. Therefore, the role of secondary compounds on herbivore fitness must be considered in the context of the abundance and level of harm from natural enemies and the costs herbivores incur feeding on plant secondary compounds.
  2. In this study, I combined field measurements of Cotesia congregata wasp parasitism pressure with detailed measurements of the costs of plant secondary compounds across developmental stages in the herbivore host, Manduca sexta.
  3. I show that C. congregata parasitoids exert large negative selective pressures, killing 31%–57% of M. sexta larvae in the field. Manduca sexta developed fastest during instars most at risk for parasitoid oviposition but growth was slowed by consumption of plant secondary compounds. The negative effects of consuming plant secondary compounds as larvae influenced adult size traits but there were no immune, survival, or fecundity costs.
  4. These results suggest that developmental costs experienced by M. sexta herbivores consuming defensive compounds are minor in comparison to the strong negative survival pressures from abundant parasitoid enemies.
  相似文献   

20.
In response to herbivores, plants produce a variety of natural compounds. Many beetle species have developed ingenious strategies to cope with these substances, including colonizing habitats not attractive for other organisms. Leaf beetle larvae of the subtribe Chrysomelina, for example, sequester plant-derived compounds and use them for their own defense against predators. Using systematically modified structural mimics of plant-derived glucosides, we demonstrated that all tested Chrysomelina larvae channel compounds from the gut lumen into the defensive glands, where they serve as intermediates in the synthesis of deterrents. Detailed studies of the sequestration process revealed a functional network of transport processes guiding phytochemicals through the larval body. The initial uptake by the larvae’s intestine seems to be fairly unspecific, which contrasts sharply with the specific import of precursors into the defensive glands. The Malpighian tubules and hind-gut organs facilitate the rapid clearing of body fluid from excess or unusable compounds. The network exists in both sequestering species and species producing deterrents de novo. Transport proteins are also required for de novo synthesis to channel intermediates from the fat body to the defensive glands for further conversion. Thus, all the tools needed to exploit host plants’ chemistry by more derived Chrysomelina species are already developed by iridoid–de novo producers. Early intermediates from the iridoid–de novo synthesis which also can be sequestered are able to regulate the enzyme activity in the iridoid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号