首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Enterochromaffin cells from the small intestine of man, guinea pig, dog, chicken, rabbit, cat and rat were stained using the Masson-Fontana ammoniacal silver method with varying dilutions of silver nitrate solution (0.25 to 5 g per 100 ml of distilled water) and incubation temperatures (60 C and 75 C). The 0.5% solution of silver nitrate gave an argentaffin pattern similar to that of the 5% solution and had two major advantages: economically, since much less silver nitrate is used, and methodologically, since low background resulted with tissue of those species (rat, cat and rabbit) that required unusually long incubation. The staining of melanocytes was similar for all dilutions at the usual staining time (15-30 min).  相似文献   

2.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

3.
Paraffin embedding was found to be satisfactory for brain stained by a modification of the Golgi dichromate-silver method. Nitrocellulose embedding caused fading in a few specimens. Several modifications in which the tissue was impregnated with silver nitrate before treating it with potassium dichromate were investigated. The following one is recommended. Fix pieces of brain 5-6 mm. thick for 2 days in: silver nitrate;0.5%, 90 ml.; formalin, comml. unneutralized (37-40% gas), 10 ml.; pyridine, pure, 0.05-0.1 ml. Mix in the order given and test for pH with brom cresol purple. A pH of 5.5-6.0 is about optimum and the amount of pyridine added can be varied to adjust it. A slight turbidity of the fixing fluid may be disregarded, but precipitation indicates too much alkalinity. Rinse the tissues with distilled water and place them in a mixture of potassium dichromate, 2.5%, 100 ml. and osmic acid, 1%, 1 ml., for 3-5 days. Wash in water, dehydrate with alcohol and embed in soft paraffin for thick sectioning. Greater intensity of staining (but with an increase in precipitate) can be secured by rinsing the blocks after the dichromate treatment and resilvering in a 0.5% solution of silver nitrate for a day or two, then washing, dehydrating and embedding. This modification of the Golgi method was worked out on brain of adult rat, guinea pig, cat and monkey. Results with fetal material were not good. All solutions used were aqueous, and staining was done at room temperature.  相似文献   

4.
Histochemical fiber typing and staining intensity in cat and rat muscles.   总被引:2,自引:0,他引:2  
In the gastrocnemius muscle of cat and rat, staining for oxidative enzymes differentiated three fiber types (A,B,C) and staining for adenosine triphosphate at pH 9.4 differentiated two fiber types (I, II) with a reliability of 90% and 98%, respectively. In cat 96% and in rat 90% of the fibers were typed identically after staining for nicotinamide adenine dinucleotidelinked lactic dehydrogenase (LDH) and succinic dehydrogenase (SDH). When differentiated by staining for LDH, A and B fibers were of type I. IN RAT, 80-90% OF ALL FIBERS WERE OF TYPE 22, COMPPRISING A, B and C fibers. Type I fibers stained for LDH intensely as did C fibers of type II, but stained intermediately for SDH. The degree of staining was measured by photometry. When fibers were stained for LDH, histograms of density showed three peaks corresponding to A, B and C fibers in cat, but only two peaks corresponding to A and C fibers in rat, In cat and rat, the densities of A, B and C fibers belonged to different populations. In soleus muscle of cat and rat stained for LDH, menadione-linked alpha-glycerophosphate dehydrogenase and adenosine triphosphatase at pH 9.4, the degree of staining differed from thatin any type of fiber in gastrocnemius muscle  相似文献   

5.
A reduced silver technique using physical development to stain embryonic nervous tissue is described. Brains are fixed in Bodian's fixative. Paraffin sections are pretreated with 1% chromic acid or 5% formol. They are impregnated with 0.01% silver nitrate dissolved in 0.1 M boric acid/sodium tetraborate buffer of pH 8 or with silver proteinate. Finally they are developed in a special physical developer which contains 0.1% silver nitrate, 0.01-0.1% formol as reducing agent, 2.5% sodium carbonate to buffer the solution at pH 10.3, 0.1% ammonium nitrate to prevent precipitation of silver hydroxide, and 5% tungstosilicic acid as a protective colloid. The development takes several minutes in this solution, thus the intensity of staining can be controlled easily. The method yields uniform, complete and reproducible staining of axons at all developmental stages of the nervous tissue and is easy to handle.  相似文献   

6.
A reduced silver technique using physical development to stain embryonic nervous tissue is described. Brains are fixed in Bodian's fixative. Paraffin sections are pretreated with 1% chromic acid or 5% formol. They are impregnated with 0.01% silver nitrate dissolved in 0.1 M boric acid/sodium tetraborate buffer of pH 8 or with silver proteinate. Finally they are developed in a special physical developer which contains 0.1% silver nitrate, 0.01-0.l% formol as developed agent, 25% sodium carbonate to buffer the solution at pH 10.3, 0.1% ammonium nitrate to prevent precipitation of silver hydroxide, and 5% tungstosilicic acid as a protective colloid. The development takes several minutes in this solution, thus the intensity of staining can be controlled easily. The method yields uniform, complete and reproducible staining of axons at all developmental stages of the nervous tissue and is easy to handle.  相似文献   

7.
Rat and rabbit brains containing surgical lesions of 5-10 days' duration were fixed in 10% formalin (neutralized with calcium carbonate) for 1 week to 6 months. Frozen sections (15-20 n) were rinsed and then soaked 7 minutes in a 1.7% solution of strong ammonia in distilled water. Subsequent treatment was as follows: rinse; 0.05% aqueous potassium permanganate 5-15 minutes; 0.5% aqueous potassium metabisulfite, 2 changes of 2.5 minutes each; wash thoroughly in 3 changes distilled water; 1.5% aqueous silver nitrate, 0.5-1.0 hr.; 1% citric acid, 5-10 sec.; 2 changes distilled water; 1% sodium thiosulfate, 30 see.; 3 changes distilled water. Each section is then processed separately. Ammoniacal silver solution (450 mg. silver nitrate in 10 ml. distilled water; add 5 ml. ethanol; let cool to room temperature; add 1 ml. strong ammonia water and 0.9 ml. of 2.5% aqueous sodium hydroxide), 0.5-1.0 min. with gentle agitation. Reduction of about 1 minute is accomplished in: distilled water, 45 ml.; ethanol, 5 ml.; 10% formalin, 1.5 ml.; 1% citric acid, 1.5 ml. Rinsing; 1% sodium thiosulfate, 10 sec.; thorough washing followed by dehydration through graded alcohol and 3 changes of xylene or toluene complete the staining process. Normal nerve fibers are slightly stained to unstained, degenerating fibers, black. The treatment in potassium permanganate is critical since too little favors overstaining of normal fibers and too much abolishes staining of degenerating fibers.  相似文献   

8.
Summary A study of the mechanisms involved in silver staining of blood vessels has been performed on the rabbit and rat aorta and vena cava, both in fixed and unfixed states. Pretreatment with cationic detergents, organic solvents, and solutions containing free iodide ions inhibited the silver staining. Anionic or neutral detergents, oxidizing agents, binders of such ions as Ca++, Mg++ and SO 4 - failed to inhibit the staining. Staining of the intercellular gaps between endothelial cells and between smooth muscle cells could also be obtained if vessels were treated with a cationic detergent and bromocresol green, or by a modified Hale's colloidal iron technique. Silver lines could be returned to dechlorinated vessels, if treated with sodium chloride before silver nitrate staining, but not vice versa; by an extended treatment with dilute silver nitrate or with gold chloride following normal silver nitrate staining; and by treatment with heparin prior to silver staining. Dark chamber experiments have demonstrated that a photographic developer can take the place of light in the silver staining procedure and that a photographic fixer has the same effect on vessel silver staining as dechlorination.The obtained results have led to the hypothesis that silver staining of vessels occurs in two stages. In the first silver ions from silver nitrate are bound by polyanions located primarily in the intercellular gaps, and then reduced. This produces a network of reduced silver grains which, however, are still too sparsely aggregated to be visualized. Chloride ions in the tissues also bind and precipitate silver ions preventing their removal in subsequent rinsing procedures. In the second stage light (or a photographic developer) reduces the silver ions in silver chloride, producing a visible accumulation of metallic silver, but only around the silver grains reduced during the first stage, analogous to the photographic process.The possible existence and function of an intercellular cement substance is discussed in light of the evidence for the presence of polyanionic groups in the intercellular gaps.  相似文献   

9.
Formalin fixed (10% aqueous) brain from cat, rabbit and man cut to blocks 3-4 mm. thick was placed in a mixture of potassium bichromate, 5 g.; chloral hydrate, 3 g. and water 90 ml. for 24 hours. The specimens were rinsed through 3 changes of water, and transferred through 3 changes of 1% silver nitrate, 1-3 minutes each, then placed for 24 hours in 1.5% silver nitrate. Frozen sections, 40-50 μ were dehydrated and mounted with a cover glass, using Permount. No deterioration of the stain was seen after 5 months. Some brains had been in formalin for 9 months; others only 7 days.  相似文献   

10.
The mercury-silver (Hg-Ag) argentaffin technique, known to stain specifically proteins in the lateral components of triads/diads in striated muscle cells, was applied to the central nervous system of adult rats. Following fixation in glutaraldehyde, axons in white and gray matter were selectively stained, but not perikarya or their proximal axon and dendrites. Neural tissues were postfixed 24 hr in 5% (w/v) mercuric acetate in 2% (v/v) acetic acid in distilled water, stained for 12-24 hr in darkness at 37-43 C with ammoniacal silver nitrate solution, freshly prepared by adding concentrated ammonia to 60% (w/v) silver nitrate solution until a small amount of silver oxide precipitate remained undissolved. Samples were then washed with freshly prepared 5% (w/v) sodium sulfite and distilled water. All steps were carried out using dark-colored glass flasks. Samples were dehydrated with ethanol and embedded in Paraplast or Poly Bed. Electron microscopy showed the silver-reducing protein inside the axons. Methylation abolished Hg-Ag axonal reactivity indicating that carboxyl groups were necessary for silver staining. Proteins with solubility properties characteristic of neurofilament proteins were involved in Hg-Ag staining. In the cerebellum the plexus of parallel fibers in the molecular layer were not stained, while basket cell axonal processes reacted intensely. The method appears to distinguish neuronal protein variants related to cytotypic differences in cytoskeletal neurofilaments.  相似文献   

11.
Staining of Nervous Tissue by Protein-Silver Mixtures   总被引:1,自引:0,他引:1  
A staining method for nerves in paraffin sections is described in which an egg albumen-silver nitrate mixture is the impregnating solution. Blocks of tissue are fixed in Bouin's fixative, formol, Huber's fixative or formol-acetic-alcohol, and decalcified if necessary in Bensley's decalcifier. Sections are impregnated overnight, in the dark, at 37-56°C in a solution containing 50 ml of filtered, aqueous 0.5% dried egg albumen with 1.8-2.5 ml of 2% silver nitrate and adjusted to pH 8.2-8.3 by the addition of ammonia. The sections are then rinsed in distilled water and the silver reduced in a mixture of hydroquinone, 1 gm; anhydrous sodium sulfite, 10 gm and distilled water, 100 ml. The remainder of the process consists of washing, gold toning, fixing in 5% sodium thiosulfate, washing, dehydrating, clearing and mounting. Casein may be used as an alternative to egg albumen in the impregnating solution (0.5% casein, 50 ml; 2% silver nitrate, 1 ml). The pH value of the solution may be adjusted by a boric acid-borax buffer or ammonium hydrogen tetraborate in the place of ammonia.  相似文献   

12.
目的探讨硝酸银、盐酸、胰酶和乙醇预处理构建鼠膀胱肿瘤的成瘤机制。方法 24G静脉留置针插入膀胱,PBS冲洗后,将小鼠随机分为5组,每组6只:(1)乙醇作用组:22%乙醇0.1 mL保留20 min;(2)胰酶作用组:0.2%胰酶保留30 min;(3)酸碱作用组:0.1 mmol/L HCl 0.1 mL作用15 s后,PBS冲洗,0.1 mmol/L NaOH0.1 mL作用5 s,排空膀胱;(4)硝酸银作用组:0.15 mol/L硝酸银保留10 s;(5)对照组:0.1 mL生理盐水。术后1和24h随机处死每组3只小鼠,摘取膀胱,HE染色观察膀胱黏膜病理变化;戊二醛固定,电镜下观察膀胱黏膜细胞微结构变化;甲苯胺蓝染色,观察膀胱黏膜固有层肥大细胞数目变化;过碘酸-希夫(PAS)染色,观察膀胱黏膜GAG层变化。40只小鼠应用上述前四组预处理因素处理膀胱后,建立膀胱癌原位模型,计算各组成瘤率。结果胰酶和乙醇处理1h后,局部上皮伞状细胞脱落,黏膜下层暴露;酸碱和硝酸银处理组大部黏膜完整性破坏,黏膜下层暴露较多,连续性中断;对照组和实验组间炎症细胞浸润均不表现出统计学差异。24 h后,胰酶和乙醇组可见局部轻度水肿并充血,黏膜完整性恢复较好,细胞间见紧密连接;而酸碱和硝酸银组上皮黏膜薄厚不均一,仍可见部分脱落黏膜。结论利用硝酸银和酸碱预处理膀胱可作为鼠膀胱肿瘤原位模型构建的首选方法。  相似文献   

13.
Paragonimus westermani is a tissue migrating parasite in the early stage until arriving at lung, and most of the parasites spend their life spans there. Considerable immune responses including activation of macrophages are taken place during the residence of parasites in the host. However, concerning the immunologic defense mechanisms of the host against this parasite, only a few document is available so far. In this study, the cytotoxic effect of peritoneal macrophages under the presence of antibody and/or complement against metacercariae of P. westermani was investigated in vitro. Metacercariae were collected from the crayfish, Cambaroides similis and hatched out in Tyrode solution (pH 7.4). Plastic adherent cells from normal or infected rat (Wistar) peritoneal exudates were used as experimental macrophages. Polyclonal antibodies were obtained from infected rats and a cat. Cat IgG was fractioned with ion exchange chromatography. Fresh rabbit complement was used according to experimental scheme. Various combinations of peritoneal macrophages, normal or infected rat serum, complement and cat IgG were incubated at 36 degrees C in 5% CO2 incubator for 6, 14, 24 and 48 hours. The results obtained were as follows: 1. P. westermani infection activated peritoneal macrophages non-specifically and this activation induced increases of cell adherence and cytotoxicity on metacercariae. 2. In the presence of infected rat serum the antibody-dependent cell-mediated cytotoxicity of peritoneal macrophages on metacercariae was significantly increased and showed a peak at 6-hour incubation. But the cytotoxic effect was markedly reduced after inactivation of complement and heat-labile IgE antibody by the heating of infected serum at 56 degrees C for 30 minutes. 3. The highest cytotoxic effect (100%) of concomitant incubation with IgG and complement showed 24 hours after incubation, although cell adherence was relatively low at 6-hour incubation and 0% at 24-hour incubation. 4. Coordinative functions of complement with serum and IgG were effective in cell adherence and in cytotoxicity, but it is not clear the independent role of complement on the macrophage-mediated cytotoxicity in this study. With these results it is assumed that P. westermani infection can induce the non-specific activation of peritoneal macrophages, and serum antibodies including IgE antibody might enhance the cytotoxicity by macrophages.  相似文献   

14.
Silver staining two types of meiotic nodules.   总被引:6,自引:0,他引:6  
We have developed a reliable method for silver staining nodules on synaptonemal complexes (SCs) of tomato (Lycopersicon esculentum). This technique involves hypotonically bursting primary microsporocytes, fixing SC spreads with paraformaldehyde, and incubating the spreads at 40 degrees C in a 33% aqueous silver nitrate solution covered with nylon mesh. When tomato SCs were stained by this method, nodules were observed with the same distribution and frequency as nodules stained with uranyl acetate and lead citrate. Incubation in silver nitrate at higher temperatures caused the loss of some or all nodules. The pattern of loss suggests that two types of nodules coexist during late zygonema and early pachynema and that one type becomes the late nodules of mid-pachynema through early diplonema.  相似文献   

15.
A procedure for the differentiation of the mesenchymal derivatives, myofibrillae, reticular and collagenous fibers is presented. Formol-Zenker fixation (5-12 hours) is followed by the washing, iodinization, dehydration and paraffin embedding steps routine for that fixative with the following modifications. Zirkle's butyl alcohol series is used for dehydration and infiltration with paraffin as well as in the alcohol slide series. Embedding paraffin used is Parawax plus 8-10% bayberry wax. Tissue-exposed surface of paraffin block is soaked in water overnight before cutting serial sections at 3-5μ. Sections are mounted using the dilute albumen method, and the slides, thoroughly dried at 37oC. overnight, are left at 60o for 10 minutes to melt the paraffin of the sections. Before staining, the sections are given a preliminary treatment with potassium permanganate and oxalic acid. For reticular staining a 10% silver nitrate bath is succeeded by an ammoniacal silver carbonate solution followed by reduction in 1% neutral formalin, toning in gold chloride and fixing in sodium thiosulphate. Myofibrillae, the sacroplasmic limiting membrane and other sarcous elements are stained by Heidenhain's azocarmine solution, adult tissues at room temperature and fetal tissues at 50 oC. Differentiation in phosphotungstic acid is followed by the staining of collagenous fibers. For adult tissue, light green SF (C.C.) is used and for fetal tissue, fast green FCF (C.C). A discussion of the preparation of ammoniacal silver solutions is included. Both stock and used solutions of ammoniacal silver have been in use by the author for over a period of two years.  相似文献   

16.
A silver staining technique applied to squash preparations of material previously fixed in 3:1 ethanol: acetic acid produces differential staining of the acrosomal region of spermatids during spermiogenesis in orthopteroid species. The method includes treatment with saline sodium citrate solution for 15 min at 60 C, and staining with 50% aqueous silver nitrate adjusted to pH 2.9 with formic acid.  相似文献   

17.
A silver staining technique applied to squash preparations of material previously fixed in 3:1 ethanol:acetic acid produces differential staining of the acrosomal region of spermatids during spermiogenesis in orthopteroid species. The method includes treatment with saline sodium citrate solution for 15 min at 60 C, and staining with 50% aqueous silver nitrate adjusted to pH 2.9 with formic acid.  相似文献   

18.
By comparing results obtained with adult mammalian tissue from introducing variables into each separate step in block-staining by the Bielschowsky silver method, the following conclusions were reached:
  1. No specific means for inhibiting the staining of connective tissue and still permitting complete staining of nerve fibers was found, but the avoidance of overstaining was very helpful toward such differentiation.
  2. Overstaining could be corrected by reducing the concentration of the silver nitrate bath or by adding an excess of ammonia to the ammoniated silver bath.
  3. Staining of fine fibers was favored by adding acetic acid to the formaldehyde used for fixation or by adding pyridin to the silver nitrate bath.
  4. Addition of protein-precipitating organic acids (trichloracetic or sulfosalicylic) to the fixative was disadvantageous.
  5. Prolonged fixation favored an increase in intensity of the stain. Four days' time was sufficient.
  6. Extraction of lipids with ammoniated alcohol gave results similar to those obtained after extraction with pyridin, but the stain was lighter.
  7. Ammoniated silver carbonate without excess ammonia had an action similar to ammoniated silver hydroxide with excess ammonia.
  8. An excess of ammonia in the ammoniated silver solution (Ag 0.1 N) was tolerated, without apparent impairment of nerve-fiber staining, up to 6 M NH3, altho the use of more than 3 M excess (2 cc. concentrated ammonia water added to 100 cc. of balanced ammoniated silver hydroxide solution) seemed unnecessary.
  9. Impregnation with 1.7% (0.1 N) silver nitrate solution was quite satisfactory and variations in the concentrations of this bath suggested that the practical limits of concentrations that would be generally satisfactory lay between 0.3 and 3.0%.
  10. The writers' experiences agreed with Agduhr's relative to the advantage of washing in 2.5% acetic acid between the ammoniated silver bath and formaldehyde reduction.
  相似文献   

19.
Slices of cat brains that had been fixed in 10% aqueous formalin for various periods from 2 days to over a year were subjected to different types of chromation prior to impregnation with silver nitrate. Acid solutions of Al, Ba, Ca, Cd, Ce, Co, Cu, Fe, K, Ni, Sr and Zn chromates were tested for usefulness as chromating agents. The chromates of Cd, Co, K, Sr and Zn were found to be best; Ca, Ce and Ni gave positive results, but Al, Ba, Cu and Fe were quite unsatisfactory. Acetic acid was somewhat preferable to formic as the acidifying agent. A formula consisting of potassium chromate, 5% aq., 100 ml. and glacial acetic acid 6-8 ml. was found to be similar in action to comparable mixtures that contained the chromate of Cd, Co, Sr or Zn. Brain slices chromated 24-48 hours in these acidified chromates and silvered in 0.75-1.0% silver nitrate for 12-24 hours at 37-40° C. gave at least three times as many good preparations as similar specimens chromated with plain potassium dichromate solution.  相似文献   

20.
The method is based on substitution fixation at —25° C of quickly frozen tissue with a 90% alcohol solution saturated with silver nitrate. The silver salts are photochemically reduced in the histological preparations. At this low temperature very little staining of the protein structure of the tissue takes place. Silver ions adsorbed by the tissue can be removed by treatment with a sodium nitrate solution. About 2/3 of the brown material in the histological preparations of cerebral cortex was due to the chloride in the tissue, 1/6 to the phosphate, 1/10 to an unidentified (probably organic) anion, and 1/20 to bicarbonate. When the alcoholic silver nitrate solution used for the fixation is acidified, or the sections are treated with nitric acid, the colored material consists of reduced silver chloride only. A comparison of the light absorption in histological preparations of cortex treated with neutral and with acid solutions supported the conclusion that about 2/3 of the colored material in the tissue is reduced silver chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号