首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
Localization of the Q beta replicase recognition site in MDV-1 RNA   总被引:4,自引:0,他引:4  
Fragments of MDV-1 RNA (a small, naturally occurring template for Q beta replicase) that were missing nucleotides at either their 5' end or their 3' end were still able to form a complex with Q beta replicase. By assaying the binding ability of fragments of different length, it was established that the binding site for Q beta replicase is determined by nucleotide sequences that are located near the middle of MDV-1 RNA. Fragments missing nucleotides at their 5' end were able to serve as templates for the synthesis of complementary strands, but fragments missing nucleotides at their 3' end were inactive, indicating that the 3'-terminal region of the template is required for the initiation of RNA synthesis. The nucleotide sequences of both the 3' terminus and the central binding region of MDV-1 (+) RNA are almost identical to sequences at the 3' terminus and at an internal region of Q beta (-) RNA.  相似文献   

6.
7.
Telomere-specific repeat sequences are essential for chromosome end stability. Telomerase maintains telomere length by adding sequences de novo onto chromosome ends. The template domain of the telomerase RNA component dictates synthesis of species-specific telomeric repeats and other regions of the RNA have been suggested to be important for enzyme structure and/or catalysis. Using enzyme reconstituted in vitro with RNAs containing deletions or substitutions we identified nucleotides in the RNA component that are important for telomerase activity. Although many changes to conserved features in the RNA secondary structure did not abolish enzyme activity, levels of activity were often greatly reduced, suggesting that regions other than the template play a role in telomerase function. The template boundary was only altered by changes in stem II that affected the conserved region upstream of the template, not by changes in other regions, such as stems I, III and IV, consistent with a role of the conserved region in defining the 5' boundary of the template. Surprisingly, telomerase RNAs with substitutions or deletion of residues potentially abolishing the conserved pseudoknot structure had wild-type levels of telomerase activity. This suggests that this base pairing interaction may not be required for telomerase activity per se but may be conserved as a regulatory site for the enzyme in vivo.  相似文献   

8.
Human telomerase catalyzes nucleolytic primer cleavage   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Cancerous cell immortality is due to relatively high concentrations of telomerase enzyme which maintains telomere sequence during cell division. Deoxyribonucleic guanidine (DNG) is a positively charged DNA analog in which guanidine replaces the phosphordiester linkage of DNA. Mixed sequences of DNG and DNA oligonucleotides are referred to as chimera. Complexation of DNG and chimeric polycations with the complementary negatively charged non-coding telomere single strand d(5'-TTAGGG-3')(n) and the 11-base telomeric RNA template (5'-CUAACCCUAAC-3') in the active site of telomerase has been studied. Calculated by ensemble sampling simulations in GBMV solvent model, we found that binding of complementary DNG hexamer with telomere is favored over that of DNA-telomere by approximately 10(6)-fold and binding of chimera hexamer is favored by approximately 10(4)-fold. Binding of complementary DNG with telomeric RNA is favored by 43 kcal/mol over telomere substrate binding with telomeric RNA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号