首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
West Nile virus (WNV) capsid (C) protein was shown to enter the nucleus via importin-mediated pathway and induce apoptosis although the precise regulatory mechanisms for such events have remained elusive. In this study, it was shown that WNV C protein was phosphorylated by protein kinase C (PKC). PKC-mediated phosphorylation influenced nuclear trafficking of C protein by modulating the efficiency of C protein–importin-α binding. Combination of bio-informatics, site-directed mutagenesis, co-immunoprecipitation, immuno-fluorescence and mammalian two-hybrid analyses showed that phosphorylation at amino acid residues residing near (Ser83) or within (Ser99 and Thr100) the bipartite nuclear localization motif of WNV C protein was essential for efficient interaction between C protein and importin-α. In addition, phosphorylation of WNV C protein by PKC was shown to enhance its binding to HDM2 and could subsequently induce p53-dependent apoptosis. Collectively, this study highlighted that phosphorylation is an important post-translational modification required to execute the functions of C protein.  相似文献   

2.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

3.
Schmitt PT  Ray G  Schmitt AP 《Journal of virology》2010,84(24):12810-12823
Enveloped virus particles are formed by budding from infected-cell membranes. For paramyxoviruses, viral matrix (M) proteins are key drivers of virus assembly and budding. However, other paramyxovirus proteins, including glycoproteins, nucleocapsid (NP or N) proteins, and C proteins, are also important for particle formation in some cases. To investigate the role of NP protein in parainfluenza virus 5 (PIV5) particle formation, NP protein truncation and substitution mutants were analyzed. Alterations near the C-terminal end of NP protein completely disrupted its virus-like particle (VLP) production function and significantly impaired M-NP protein interaction. Recombinant viruses with altered NP proteins were generated, and these viruses acquired second-site mutations. Recombinant viruses propagated in Vero cells acquired mutations that mainly affected components of the viral polymerase, while recombinant viruses propagated in MDBK cells acquired mutations that mainly affected the viral M protein. Two of the Vero-propagated viruses acquired the same mutation, V/P(S157F), found previously to be responsible for elevated viral gene expression induced by a well-characterized variant of PIV5, P/V-CPI(-). Vero-propagated viruses caused elevated viral protein synthesis and spread rapidly through infected monolayers by direct cell-cell fusion, bypassing the need to bud infectious virions. Both Vero- and MDBK-propagated viruses exhibited infectivity defects and altered polypeptide composition, consistent with poor incorporation of viral ribonucleoprotein complexes (RNPs) into budding virions. Second-site mutations affecting M protein restored interaction with altered NP proteins in some cases and improved VLP production. These results suggest that multiple avenues are available to paramyxoviruses for overcoming defects in M-NP protein interaction.  相似文献   

4.
5.
6.
Prolidase (EC 3.4.13.9) is a ubiquitously distributed imidodipeptidase that catalyzes the hydrolysis of C-terminal proline or hydroxyproline containing dipeptides. The enzyme plays an important role in the recycling of proline for collagen synthesis and cell growth. An increase in enzyme activity is correlated with increased rates of collagen turnover indicative of extracellular matrix (ECM) remodeling, but the mechanism linking prolidase activity and ECM is poorly understood. Thus, the effect of ECM-cell interaction on intracellular prolidase activity is of special interest. In cultured human skin fibroblasts, the interaction with ECM and, more specifically, type I collagen mediated by the β1 integrin receptor regulates cellular prolidase activity. Supporting evidence comes from the following observations: 1) in sparse cells with a low amount of ECM collagen or in confluent cells in which ECM collagen was removed by collagenase (but not by trypsin or elastase) treatment, prolidase activity was decreased; 2) this effect was reversed by the addition of type I collagen or β1 integrin antibody (agonist for β1 integrin receptor); 3) sparse cells (with typically low prolidase activity) showed increased prolidase activity when grown on plates coated with type I collagen or on type IV collagen and laminin, constituents of basement membrane; 4) the relative differences in prolidase activity due to collagenase treatment and subsequent recovery of the activity by β1 integrin antibody or type I collagen treatment were accompanied by parallel differences in the amount of the enzyme protein recovered from these cells, as shown by Western immunoblot analysis. Thus, we conclude that prolidase activity responded to ECM metabolism (tissue remodeling) through signals mediated by the integrin receptor. J. Cell. Biochem. 67:166–175, 1997. Published 1997 Wiley-Liss, Inc.  相似文献   

7.
Periostin is a 90 kDa secreted protein, originally identified in murine osteoblast-like cells, with a distribution restricted to collagen-rich tissues and certain tumors. In this paper, we first analyzed the expression of periostin mRNA and protein in human fetal osteoblasts (hFOB) and human osteosarcoma (hOS) cell lines by RT real-time PCR and Western blot, respectively. The hFOB 1.19 and three hOS (MHM, KPDXM and Eggen) showed highly variable periostin mRNA levels and protein. Second, we showed that the expression of periostin mRNA was inversely related to the cells' abilities to differentiate and mineralize. Then, we investigated the regulation of periostin mRNA in hFOB after siRNA treatment and in mouse primary osteoblasts (mOB) treated with PTH. Knock-down of periostin mRNA, down-regulated PTHrP, but did not affect the expression of other important markers of differentiation such as RUNX2. In addition, periostin mRNA was transiently up-regulated in osteoblasts by PTH. Finally, the localization of periostin and its partially co-localization with collagen 1a1 mRNA and protein was studied in mouse embryos and postnatal pups using in situ hybridization and immunohistochemistry, respectively. In conclusion, the present study provides novel observations related to the expression, distribution and regulation of periostin in bone cells and extracellular matrix.  相似文献   

8.
The Ebola virus membrane-associated matrix protein VP40 is thought to be crucial for assembly and budding of virus particles. Here we present the crystal structure of a disk-shaped octameric form of VP40 formed by four antiparallel homodimers of the N-terminal domain. The octamer binds an RNA triribonucleotide containing the sequence 5'-U-G-A-3' through its inner pore surface, and its oligomerization and RNA binding properties are facilitated by two conformational changes when compared to monomeric VP40. The selective RNA interaction stabilizes the ring structure and confers in vitro SDS resistance to octameric VP40. SDS-resistant octameric VP40 is also found in Ebola virus-infected cells, which suggests that VP40 has an additional function in the life cycle of the virus besides promoting virus assembly and budding off the plasma membrane.  相似文献   

9.
10.
11.
12.
Shvets E  Elazar Z 《Autophagy》2008,4(8):1054-1056
LC3 is a widely used marker of autophagosomes in mammalian cells. However, in addition to its autophagosomal localization, GFP-LC3 is often found associated with protein aggregates that are formed in an autophagy-independent manner. In addition, LC3 directly interacts with p62/SQSTM1 (hereafter named p62), a common constituent of protein aggregates. In our recent report, we mapped the regions in LC3 involved in its binding to p62 and showed that this binding is essential for the incorporation of p62 into autophagosomes. Here we demonstrate that the autophagy-unrelated association of GFP-LC3 with protein aggregates is dependent on its interaction with p62.  相似文献   

13.
《Autophagy》2013,9(8):1054-1056
LC3 is a widely used marker of autophagosomes in mammalian cells. However, in addition to its autophagosomal localization, GFP-LC3 is often found associated with protein aggregates that are formed in an autophagy-independent manner. In addition, LC3 directly interacts with p62/SQSTM1 (hereafter named p62), a common constituent of protein aggregates. In our recent report we mapped the regions in LC3 involved in its binding to p62 and showed that this binding is essential for the incorporation of p62 into autophagosomes. Here we demonstrate that the autophagy-unrelated association of GFP-LC3 with protein aggregates is dependent on its interaction with p62.

Addendum to: Shvets E, Fass E, Scherz-Shouval R, Elazar Z. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci 2008; 121:2685-95.  相似文献   

14.
15.
16.
17.
Mammalian hepatitis B viruses encode an essential regulatory protein, termed X, which may also be implicated in liver cancer development associated with chronic infection. X protein, also referred to as HBx in human virus and WHx in woodchuck virus, has been reported to bind to a number of cellular proteins, including the DDB1 subunit of the damaged DNA-binding (DDB) complex. Our previous work provided genetic evidence for the importance of WHx-DDB1 interaction in both the activity of the X protein and establishment of viral infection in woodchucks. In the present study, a direct action of DDB1 on the X protein is documented. Physical interaction between the two proteins leads to an increase in X protein stability. This effect results from protection of the viral protein from proteasome-mediated degradation. Protection of WHx is overcome in the presence DDB2, the second subunit of the DDB heterodimer. In keeping with observations reported for HBx, DDB2 was found to directly bind to WHx. Nonetheless, the counteracting effect of DDB2 on X stabilization requires DDB2-DDB1 interaction. Taken together, these findings substantiate the physical and functional connection between the X protein and the DDB1-DDB2 heterodimer, leading to the regulation of the pool of the viral protein.  相似文献   

18.
Dystrophin and the dystrophin-associated protein complex (DAPC) have recently been implicated in cell signalling events. These proteins are ideally placed to transduce signals from the extracellular matrix (ECM) to the cytoskeleton. Here we show that beta-dystroglycan is tyrosine-phosphorylated in C2/C4 mouse myotubes. Tyrosine phosphorylation was detected by mobility shifts on SDS-polyacrylamide gels (SDS-PAGE) and confirmed by immunoprecipitation and two-dimensional gel electrophoresis. The potential functional significance of this tyrosine phosphorylation was investigated using peptide 'SPOTs' assays. Phosphorylation of tyrosine in the 15 most C-terminal amino acids of beta-dystroglycan disrupts its interaction with dystrophin. The tyrosine residue in beta-dystroglycan's WW-binding motif PPPY appears to be the most crucial in disrupting the beta-dystroglycan-dystrophin interaction. beta-dystroglycan forms the essential link between dystrophin and the rest of the DAPC. This regulation by tyrosine phosphorylation may have implications in the pathogenesis and treatment of Duchenne's muscular dystrophy (DMD).  相似文献   

19.
20.
Ebola virus (EBOV) is a zoonotic pathogen, the infection often results in severe, potentially fatal, systematic disease in human and nonhuman primates. VP35, an essential viral RNA-dependent RNA polymerase cofactor, is indispensable for Ebola viral replication and host innate immune escape. In this study, VP35 was demonstrated to be phosphorylated at Serine/Threonine by immunoblotting, and the major phosphorylation sites was S187, S205, T206, S208 and S317 as revealed by LC-MS/MS. By an EBOV minigenomic system, EBOV minigenome replication was shown to be significantly inhibited by the phosphorylation-defective mutant, VP35 S187A, but was potentiated by the phosphorylation mimic mutant VP35 S187D. Together, our findings demonstrate that EBOV VP35 is phosphorylated on multiple residues in host cells, especially on S187, which may contribute to efficient viral genomic replication and viral proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号