共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of cellular phenotype and expression of polyomavirus middle T antigen in rat fibroblasts. 总被引:24,自引:6,他引:24
下载免费PDF全文

Polyoma middle T antigen (mT) was expressed in rat F-111 cells under control of the dexamethasone-regulatable mouse mammary tumor virus promoter. Graded phenotypic responses to levels of mT induction by the hormone were seen, with morphological transformation, focus formation, and anchorage-independent growth requiring increasing levels of mT expression. The ability of different clones to form tumors reflected their maximum level of induction of mT-associated kinase and their ability to grow in soft agar. Expression of transformation parameters and tumorigenicity correlates with the level of mT phosphorylated by pp60c-src in immune complexes and not with the total amount of mT determined by metabolic labeling. We suggest that cellular factors regulate mT activity by forming a kinase-active fraction of mT molecules that controls the transformed state. 相似文献
2.
Natural biology of polyomavirus middle T antigen. 总被引:1,自引:0,他引:1
K A Gottlieb L P Villarreal 《Microbiology and molecular biology reviews》2001,65(2):288-318 ; second and third pages, table of contents
"It has been commented by someone that 'polyoma' is an adjective composed of a prefix and suffix, with no root between--a meatless linguistic sandwich" (C. J. Dawe). The very name "polyomavirus" is a vague mantel: a name given before our understanding of these viral agents was clear but implying a clear tumor life-style, as noted by the late C. J. Dawe. However, polyomavirus are not by nature tumor-inducing agents. Since it is the purpose of this review to consider the natural function of middle T antigen (MT), encoded by one of the seemingly crucial transforming genes of polyomavirus, we will reconsider and redefine the virus and its MT gene in the context of its natural biology and function. This review was motivated by our recent in vivo analysis of MT function. Using intranasal inoculation of adult SCID mice, we have shown that polyomavirus can replicate with an MT lacking all functions associated with transformation to similar levels to wild-type virus. These observations, along with an almost indistinguishable replication of all MT mutants with respect to wild-type viruses in adult competent mice, illustrate that MT can have a play subtle role in acute replication and persistence. The most notable effect of MT mutants was in infections of newborns, indicating that polyomavirus may be highly adapted to replication in newborn lungs. It is from this context that our current understanding of this well-studied virus and gene is presented. 相似文献
3.
Murine polyomavirus contains two related minor coat proteins, VP2 and VP3, in addition to the major coat protein, VP1. The sequence of VP3 is identical to that of the carboxy-terminal two-thirds of VP2. VP2 may serve a role in uncoating of the virus, and both minor coat proteins may be important for viral assembly. In this study, we show that VP3 and a series of deletion mutants of VP3 can be expressed in Escherichia coli as fusion proteins to glutathione S-transferase and partially solubilized with a mild detergent. Using an in vitro binding assay, we demonstrate that a 42-amino-acid fragment near the carboxy terminus of VP3 (residues 140 to 181) is sufficient for binding to purified VP1 pentamers. This binding interaction is rapid, saturable, and specific for the common carboxy terminus of VP2 and VP3. The VP1-VP3 complex can be coimmunoprecipitated with an antibody specific to VP1, and a purified VP3 fragment can selectively extract VP1 from a crude cell lysate. The stoichiometry of the binding reaction suggests that each VP1 pentamer in the virus binds either one VP2 or one VP3, with the VP1-VP2/3 complex stabilized by hydrophobic interactions. These results, taken together with studies from other laboratories on the expression of polyomavirus capsid proteins in mouse and insect cells (S. E. Delos, L. Montross, R. B. Moreland, and R. L. Garcea, Virology, 194:393-398, 1993; J. Forstova, N. Krauzewicz, S. Wallace, A. J. Street, S. M. Dilworth, S. Beard, and B. E. Griffin, J. Virol. 67:1405-1413, 1993), support the idea that a VP1-VP2/3 complex forms in the cytoplasm and, after translocation into the nucleus, acts as the unit for viral assembly. 相似文献
4.
We compared the proteins which associate with middle T antigen (MT) of polyomavirus in human cells infected with Ad5(pymT), a recombinant adenovirus which directs the overexpression of MT, with the MT-associated proteins (MTAPs) previously identified in murine fibroblasts expressing MT. MTAPs of 27, 29, 36, and 63 kilodaltons (kDa) appeared to be fairly well conserved between the two species, as judged by comigration on two-dimensional gels. Several 61-kDa MTAP species detected in MT immunoprecipitates from both cell sources also comigrated on these gels. However, no protein comigrating precisely with the murine 85-kDa MTAP could be detected in the human cells. Furthermore, two proteins of 72 and 74 kDa associated with wild-type MT in the infected human cells but not in murine fibroblasts expressing MT. It had been previously reported for murine cells that the 70-kDa heat shock protein associates with a particular mutant MT but not with wild-type MT (G. Walter, A. Carbone, and W.J. Welch, J. Virol. 61:405-410, 1987). By the criteria of comigration on two-dimensional gels, tryptic peptide mapping, and immunoblotting, we showed that the 72- and 74-kDa proteins that associate with wild-type MT in human cells are the major human 70-kDa heat shock proteins. 相似文献
5.
Polyomavirus large T antigen is phosphorylated on both serine and threonine residues at a ratio of approximately 6 to 1. This phosphorylation could be resolved into a series of nine Staphylococcus aureus V8 phosphopeptides. All of these were found in an N-terminal chymotryptic fragment with a molecular weight of 57,000. A C-terminal formic acid fragment of 50,000-molecular-weight lacked phosphate. Therefore, unlike simian virus 40 large T antigen, polyomavirus large T antigen has no significant C-terminal phosphorylation. Limited V8 and hydroxylamine cleavage showed that the phosphorylations can be localized to two different portions of the molecule. A significant fraction of the phosphate was localized in the N-terminal portion of the molecule before residue 183. Within this region V8 peptides 4, 8, and 9 represented phosphorylations that were more proximal, while peptides 1, 2, and 3 included more distal phosphorylations. None of these phosphorylations appeared analogous to those of simian virus 40 large T antigen. V8 phosphopeptides 5 and 7 were more distal and could be distinguished in biological experiments from the N-terminal phosphorylations. Formic acid mapping suggested that much, if not all, of this phosphorylation is located between residues 257 and 285. 相似文献
6.
The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, 32Pi-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed. 相似文献
7.
Phosphorylation sites in polyomavirus large T antigen that regulate its function in viral, but not cellular, DNA synthesis.
下载免费PDF全文

Polyomavirus large T antigen (large T) is a highly phosphorylated protein that can be separated by proteolysis into two domains that have independent function. A cluster of phosphorylation sites was found in the protease-sensitive region connecting the N-terminal and C-terminal domains. Edman degradation of 32P-labeled protein identified serines 267, 271, and 274 and threonine 278 as sites of phosphorylation. Analysis of site-directed mutants confirmed directly that residues 271, 274, and 278 were phosphorylated. Threonine 278, shown here to be phosphorylated by cyclin/cyclin-dependent kinase activity, is required for viral DNA replication in either the full-length large T or C-terminal domain context. The serine phosphorylations are unimportant in the C-terminal domain context even though their mutations activates viral DNA replication in full-length large T. This finding suggests that these sites may function in relating the two domains to each other. Although the phosphorylation sites were involved in viral DNA replication, none was important for the ability of large T to drive cellular DNA replication as measured by bromodeoxyuridine incorporation, and they did not affect large T interactions with the Rb tumor suppressor family. 相似文献
8.
S A Courtneidge L Goutebroze A Cartwright A Heber S Scherneck J Feunteun 《Journal of virology》1991,65(6):3301-3308
Hamster polyomavirus (HaPV) is associated with lymphoid and hair follicle tumors in Syrian hamsters. The early region of HaPV has the potential to encode three polypeptides (which are related to the mouse polyomavirus early proteins) and can transform fibroblasts in vitro. We identified the HaPV middle T antigen (HamT) as a 45-kDa protein. Like its murine counterpart, HamT was associated with serine/threonine phosphatase, phosphatidylinositol-3 kinase, and protein tyrosine kinase activities. However, whereas mouse middle T antigen associates predominantly with pp60c-src and pp62c-yes, HamT was associated with a different tyrosine kinase, p59fyn. The ability of HaPV to cause lymphoid tumors may therefore reside in its ability to associate with p59fyn, a potentially important tyrosine kinase in lymphocytes. 相似文献
9.
10.
Interactions between SV40 T antigen and DNA polymerase alpha 总被引:16,自引:0,他引:16
Simian virus 40 large T antigen is the only viral protein required for SV40 DNA synthesis in vivo and in vitro. This complex protein recruits the cellular DNA replication apparatus to the SV40 origin and provides a good model for the initiation of cellular DNA replication. The interaction between SV40 large T antigen (TAg) and DNA polymerase alpha has been shown previously to be inhibited by murine p53, the nuclear protein product of a cellular anti-oncogene. The murine p53 protein will inhibit SV40 replication both in vivo and in vitro. Using monoclonal antibodies to TAg, p53, and polymerase alpha, we developed immunoassays to measure the complexes formed between TAg and polymerase alpha and between TAg and p53. The assays allowed us to detect the TAg-polymerase alpha and TAg-p53 complexes in lytically infected and transformed cells. The amount of TAg complexed to p53 was far lower in infected cells than in transformed cells. We used a large range of monoclonal antibodies to different sites on T antigen and found that antibodies that inhibited the formation of the TAg-polymerase alpha complex also inhibited the formation of the TAg-p53 complex. Finally, we found that the tsA58 and 5080 point mutations in TAg, previously shown to inhibit the binding of TAg to p53, also inhibit its binding to polymerase alpha. Together these results emphasize the specificity and functional importance of the TAg-polymerase alpha complex. The disruption of this interaction by the cellular anti-oncogene p53 provides an interesting model for the normal action of p53 and the effects of its removal on the regulation of cellular DNA synthesis. 相似文献
11.
Isolation and characterization of NIH 3T3 cells expressing polyomavirus small T antigen. 总被引:1,自引:10,他引:1
下载免费PDF全文

The polyomavirus small T-antigen gene, together with the polyomavirus promoter, was inserted into a retrovirus vector pGV16 which contains the Moloney sarcoma virus long terminal repeat and neomycin resistance gene driven by the simian virus 40 promoter. This expression vector, pGVST, was packaged into retrovirus particles by transfection of psi 2 cells which harbor packaging-defective murine retrovirus genome. NIH 3T3 cells were infected by this replication-defective retrovirus containing pGVST. Of the 15 G418-resistant cell clones, 8 express small T antigen at various levels as revealed by immunoprecipitation. A cellular protein with an apparent molecular weight of about 32,000 coprecipitates with small T antigen. Immunofluorescent staining shows that small T antigen is mainly present in the nuclei. Morphologically, cells expressing small T antigen are indistinguishable from parental NIH 3T3 cells and have a microfilament pattern similar to that in parental NIH 3T3 cells. Cells expressing small T antigen form a flat monolayer but continue to grow beyond the saturation density observed for parental NIH 3T3 cells and eventually come off the culture plate as a result of overconfluency. There is some correlation between the level of expression of small T antigen and the growth rate of the cells. Small T-antigen-expressing cells form small colonies in soft agar. However, the proportion of cells which form these small colonies is rather small. A clone of these cells tested did not form tumors in nude mice within 3 months after inoculation of 10(6) cells per animal. Thus, present studies establish that the small T antigen of polyomavirus is a second nucleus-localized transforming gene product of the virus (the first one being large T antigen) and by itself has a function which is to stimulate the growth of NIH 3T3 cells beyond their saturation density in monolayer culture. 相似文献
12.
Characterization of an immortalizing N-terminal domain of polyomavirus large T antigen. 总被引:3,自引:5,他引:3
下载免费PDF全文

Polyomavirus large T antigen has an N-terminal domain of approximately 260 amino acids which can immortalize primary cells but lacks sequences known to be required for DNA binding and replication. Treatment of full-length large T with either V8 protease or chymotrypsin yields an N-terminal fragment of 36 to 40 kDa and a C-terminal fragment of approximately 60 kDa. This finding suggests a division of the protein into two domains. Proteolysis experiments show that the N-terminal domain does not have strong physical association with the rest of the protein. It also does not self-associate. A construct expressing only the N-terminal 259 amino acids is sufficient for immortalization. The independently expressed N-terminal domain is multiply phosphorylated, although at a lower level than the same region in full-length large T. The 259-residue protein binds to both pRb and p107 with somewhat lower efficiency than the full-length protein. 相似文献
13.
To map the DNA-binding domain of polyomavirus large T antigen, we constructed a set of plasmids coding for unidirectional carboxy- or amino-terminal deletion mutations in the large T antigen. Analysis of origin-specific DNA binding by mutant proteins expressed in Cos-1 cells revealed that the C-terminal boundary of the DNA-binding domain is at or near Glu-398. Fusion proteins of large T antigen lacking the first 200 N-terminal amino acids bound specifically to polyomavirus origin DNA; however, deletions beyond this site resulted in unstable proteins which could not be tested for DNA binding. Testing of point mutants and internal deletions by others suggested that the N-terminal boundary of the DNA-binding domain lies between amino acids 282 and 286. Taken together, these results locate the DNA-binding domain of polyomavirus large T antigen to the 116-amino-acid region between residues 282 and 398. 相似文献
14.
A gene encoding the large T antigen of polyomavirus was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus so that gene expression was under the control of the strong, very late polyhedrin gene promoter. Significantly more large T antigen was produced in recombinant virus-infected insect cells than was observed in polyomavirus-transformed mouse cells. The insect-derived T antigen exhibited polyomavirus origin-specific DNA binding. The baculovirus expression system provides a convenient source of T antigen for in vitro studies. 相似文献
15.
Truncated forms of the polyomavirus middle T antigen can substitute for the small T antigen in lytic infection. 总被引:2,自引:8,他引:2
下载免费PDF全文

Cloned polyomavirus genomes encoding the small T antigen or truncated forms of the middle T antigen facilitated the growth of genomes encoding only the large T antigen in mouse 3T6 cells. We conclude that an N-terminal domain of the middle T antigen, in the appropriate cellular location, can substitute for the small T antigen during lytic infection. 相似文献
16.
Antibodies against a nonapeptide of polyomavirus middle T antigen: cross-reaction with a cellular protein(s). 总被引:1,自引:3,他引:1
下载免费PDF全文

Y Ito Y Hamagishi K Segawa T Dalianis E Appella M Willingham 《Journal of virology》1983,48(3):709-720
Antibodies were raised against the sequence Glu-Glu-Glu-Glu-Tyr-Met-Pro-Met -Glu, which represents a part of the middle T antigen of polyomavirus that is considered to be important in inducing the phenotype of transformed cells. The antibodies reacted with native as well as denatured middle T antigens. In addition, the antibodies immunoprecipitated a cellular protein with an apparent molecular weight of 130,000 (130K) from mouse and rat cells. In some cases, a 33K protein was also immunoprecipitated. Immunoprecipitation of middle T antigen as well as 130K and 33K proteins was blocked by the peptide. The antibodies labeled microfilaments of untransformed mouse, rat, human, and chicken cells by immunofluorescence. This labeling was also blocked by the peptide. The labeling pattern and distribution under a variety of conditions were indistinguishable from those of anti-actin antibodies, although no evidence has been obtained to indicate that the anti-peptide antibodies react with actin. The 130K protein migrated in sodium dodecyl sulfate-polyacrylamide gel electrophoresis slightly slower than chicken gizzard vinculin (130K) and slightly faster than myosin light-chain kinase of chicken smooth muscle (130K). Neither of these proteins absorbed the anti-peptide antibodies. The 33K protein does not seem to be tropomyosin (32K to 40K). 相似文献
17.
Chlamydophila pneumoniae is a gram-negative obligate intracellular bacterial pathogen that causes pneumonia and bronchitis and may contribute to atherosclerosis. The developmental cycle of C. pneumoniae includes a morphological transition from an infectious extracellular elementary body (EB) to a noninfectious intracellular reticulate body (RB) that divides by binary fission. The C. pneumoniae genome encodes a type III secretion (T3S) apparatus that may be used to infect eukaryotic cells and to evade the host immune response. In the present study, Cpn0712 (CdsD), Cpn0704 (CdsQ), and Cpn0826 (CdsL), three C. pneumoniae genes encoding yersiniae T3S YscD, YscQ, and YscL homologs, respectively, were cloned and expressed as histidine- and glutathione S-transferase (GST)-tagged proteins in Escherichia coli. Purified recombinant proteins were used to raise hyper-immune polyclonal antiserum and were used in GST pull-down and copurification assays to identify protein-protein interactions. CdsD was detected in both EB and RB lysates by Western blot analyses, and immunofluorescent staining demonstrated the presence of CdsD within inclusions. Triton X-114 solubilization and phase separation of chlamydial EB proteins indicated that CdsD partitions with cytoplasmic proteins, suggesting it is not an integral membrane protein. GST pull-down assays indicated that recombinant CdsD interacts with CdsQ and CdsL, and copurification assays with chlamydial lysates confirmed that native CdsD interacts with CdsQ and CdsL. To the best of our knowledge, this is the first report demonstrating interactions between YscD, YscQ, and YscL homologs of bacterial T3S systems. These novel protein interactions may play important roles in the assembly or function of the chlamydial T3S apparatus. 相似文献
18.
Zinc-binding and protein-protein interactions mediated by the polyomavirus large T antigen zinc finger. 总被引:1,自引:4,他引:1
下载免费PDF全文

Polyomavirus large tumor antigen (LT) contains a potential C2H2 zinc binding element between residues 452 and 472. LT also contains a third histidine in this region, conserved among the polyomavirus LTs. Synthetic peptides of this region bound a single atom of zinc, as determined by spectroscopic analysis. Blotting experiments also showed that fusion proteins containing the element, as well as full-length LT, bound 65Zn. Polyomavirus middle T and small T antigens also bound zinc in the blotting assay. Site-directed mutagenesis showed the importance of this element in LT. Point mutations in four of the conserved residues (C-452, C-455, H-465, and H-469) blocked the ability of LT to function in viral DNA replication, while mutation of H-472-->L decreased replication to 1/30th that of the wild type. Point mutations in intervening residues tested had little effect on replication. Mutants resulting from mutations in the conserved cysteine or histidine residues retained the ability to bind origin DNA. However, they did show a defect in self-association. Because double-hexamer formation is involved in DNA replication, this deficiency is sufficient to explain the defect in replication. Mutants created by point mutations of the coordinating residues were also deficient in replication-associated phosphorylations. 相似文献
19.
Cyclin-dependent kinase regulation of the replication functions of polyomavirus large T antigen.
下载免费PDF全文

The amino-terminal portion of polyomavirus (Py) large T antigen (T Ag) contains two phosphorylation sites, at T187 and T278, which are potential substrates for cyclin-dependent kinases (CDKs). Our experiments were designed to test whether either or both of these sites are involved in the origin DNA (ori DNA) replication function of Py T Ag. Mutations were generated in Py T Ag whereby either or both threonines were replaced with alanine, generating T187A, T278A, and double-mutants (DM [T187A T278A]) mutant T Ags. We found that the Py ori DNA replication functions of T278A and DM, but not T187A, mutant T Ags were abolished both in vivo and in vitro. Consistent with this finding, it was shown that the ori DNA binding and unwinding activities of mutant T278A Py T Ag were greatly impaired. Moreover, whereas wild-type Py T Ag is an efficient substrate for phosphorylation by cyclin A-CDK2 and cyclin B-cdc2 complexes, it is phosphorylated poorly by a cyclin E-CDK2 complex. In contrast to mutant T187A, which behaved similarly to the wild-type protein, T278A was only weakly phosphorylated by cyclin B-cdc2. These data thus suggest that T278 is an important site on Py T Ag for phosphorylation by CDKs and that loss of this site leads to its various defects in mediating ori DNA replication. S- and G2-phase-specific CDKs, but not a G1-specific CDK, can phosphorylate wild-type T Ag, which suggests yet another reason why DNA tumor viruses require actively cycling host cells. 相似文献
20.