首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In strain CL ofPhysarum polycephalum, multinucleate, haploid plasmodia form within clones of uninucleate, haploid amoebae. Analysis of plasmodium development, using time-lapse cinematography, shows that binucleate cells arise from uninucleate cells, by mitosis without cytokinesis. Either one or both daughter cells, from an apparently normal amoebal division, can enter an extended cell cycle (28.7 hours compared to the 11.8 hours for vegetative amoebae) that ends in the formation of a binucleate cell. This long cycle is accompanied by extra growth; cells that become binucleate are twice as big as amoebae at the time of mitosis. Nuclear size also increases during the extended cell cycle: flow cytometric analysis indicates that this is not associated with an increase over the haploid DNA content. During the extended cell cycle uninucleate cells lose the ability to transform into flagellated cells and also become irreversibly committed to plasmodium development. It is shown that commitment occurs a maximum of 13.5 hours before binucleate cell formation and that loss of ability to flagellate precedes commitment by 3–5 hours. Plasmodia develop from binucleate cells by cell fusions and synchronous mitoses without cytokinesis.Abbreviations CL Colonia Leicester - DSDM Dilute semi-defined medium - FKB Formalin killed bacterial suspension - IMT Intermitotic time - LIA Liver infusion agar - SBS Standard bacterial suspension - SDM Semi-defined medium  相似文献   

2.
Time-lapse cinematography and immunofluorescence microscopy were used to study cellular events during amoebal fusions and sexual plasmodium development in Physarum polycephalum. Amoebal fusions occurred frequently in mixtures of strains heteroallelic or homoallelic for the mating-type locus matA, but plasmodia developed only in the matA-heteroallelic cultures. These observations confirmed that matA controls development of fusion cells rather than cell fusion. Analysis of cell pedigrees showed that, in both types of culture, amoebae fused at any stage of the cell cycle except mitosis. In matA-heteroallelic fusion cells, nuclear fusion occurred in interphase about 2 h after cell fusion; interphase nuclear fusion did not occur in matA-homoallelic fusion cells. The diploid zygote, formed by nuclear fusion in matA-heteroallelic fusion cells, entered an extended period of cell growth which ended in the formation of a binucleate plasmodium by mitosis without cytokinesis. In contrast, no extension to the cell cycle was observed in matA-homoallelic fusion cells and mitosis was always accompanied by cytokinesis. In matA-homoallelic cultures, many of the binucleate fusion cells split apart without mitosis, regenerating pairs of uninucleate amoebae; in the remaining fusion cells, the nuclei entered mitosis synchronously and spindle fusion sometimes occurred, giving rise to a variety of products. Immunofluorescence microscopy showed that matA-heteroallelic fusion cells possessed two amoebal microtubule organizing centres, and that most zygotes possessed only one; amoebal microtubule organization was lost gradually over several cell cycles. In matA-homoallelic cultures, all the cells retained amoebal microtubule organization.  相似文献   

3.
The two vegetative cell types of the acellular slime mould Physarum polycephalum - amoebae and plasmodia - differ greatly in cellular organisation and behaviour as a result of differences in gene expression. The development of uninucleate amoebae into multinucleate, syncytial plasmodia is under the control of the mating-type locus matA, which is a complex, multi-functional locus. A key period during plasmodium development is the extended cell cycle, which occurs in the developing uninucleate cell. During this long cell cycle, many of the changes in cellular organisation that accompany development into the multinucleate stage are initiated including, for example, alterations in microtubule organisation. Genes have been identified that show cell-type specific expression in either amoebae or plasmodia and many of these genes alter their pattern of expression during the extended cell cycle. With the introduction of a DNA transformation system for P. polycephalum, it is now possible to investigate the functions of genes in the vegetative cell types and their roles in the cellular reorganisations accompanying development.  相似文献   

4.
SYNOPSIS. Studies comparing mitosis in amoebae and plasmodia of the true slime mold Didymium nigripes reveal that at the time of differentiation pronounced changes occur in the mitotic process. Not only does the amount of time required for division of the 2 stages differ, but plasmodial mitosis is characterized by persistence of the nuclear membrane and the apparent lack of centrioles. The origin of multinucleate plasmodia from uninucleate cells which have already undergone cytoplasmic differentiation is described. Division time in a population of amoebae becomes more uniform after those cells which are destined to form plasmodia have differentiated.
The observations and data presented indicated that differences in mitotic behavior also occur between amoebae of 3 stocks with differences in plasmodial structure and behavior. Comparison of mitosis in the plasmodia of these 3 stocks revealed no significant differences.  相似文献   

5.
Summary Amoebae of strain CLof Physarum polycephalum undergo apogamic development to form multinucleate plasmodia. During the amoebalplasmodial transition, large uninucleate cells become irreversibly committed to plasmodium development. In developing cultures, amoebae lose the ability to flagellate before they become committed. Enriched suspensions of committed cells can be obtained by inducing asynchronous differentiating cultures to flagellate and passing the cells through a glass bead column. Committed cells can be cultured to form plasmodia on bacterial lawns or in axenic liquid medium but cannot be cultured on axenic agar medium. Uninucleate committed cells express tubulin isotypes characteristic of amoebae, but after culture in axenic liquid medium, the cells express plasmodial specific tubulin isotypes.Abbrevations SDM Semi-defined medium - DSDM Dilute semidefined medium - LIA Liver infusion agar - SBS Standard bacterial suspension - IEF Isoelectric focussing - SDS Sodium dodecyl sulphate - PAUF Precommitted amoebae unable to flagellate (for the explanation of these cells see text).  相似文献   

6.
In Physarum, microscopic uninucleate amoebae develop into macroscopic multinucleate plasmodia. In the mutant strain, RA614, plasmodium development is blocked. RA614 carries a recessive mutation (npfL1) in a gene that functions in sexual as well as apogamic development. In npfL+ apogamic development, binucleate cells arise from uninucleate cells by mitosis without cytokinesis at the end of an extended cell cycle. In npfL1 cultures, apogamic development became abnormal at the end of the extended cell cycle. The cells developed a characteristic rounded, vacuolated appearance, nuclear fusion and vigorous cytoplasmic motion occurred, and the cells eventually died. Nuclei were not visible by phase-contrast microscopy in most of the abnormally developing cells, but fluorescence microscopy after DAPI staining revealed intensely staining, condensed nuclei without nucleoli. Studies of tubulin organization during npfL1 development indicated a high frequency of abnormal mitotic spindles and, in some interphase cells, abnormally thick microtubules. Some of these features were observed at low frequency in the parental npfL+ strain and may represent a pathway of cell death, resembling apoptosis, that may be triggered in more than one way. Nuclear fusion occurred during interphase and mitosis in npfL1 cells, and multipolar spindles were also observed. None of these features were observed in npfL+ cells, suggesting that a specific effect of the npfL1 mutation may be an incomplete alteration of nuclear structure from the amoebal to the plasmodial state.  相似文献   

7.
8.
SYNOPSIS. The life cycle of the true slime mold Physarum polycephalum includes 2 vegetative stages: the multinucleate coenocytic plasmodium and the uninucleate amoeba. A clone of amoebae established from a single spore does not normally yield plasmodia. Plasmodia are formed when amoebae from particular clones are mixed; thus plasmodium formation is said to be controlled by a ‘mating-type’ system. Previous work by the author with a sample of P. polycephalum derived from a single source revealed that 2 mating types were present and were determined by a pair of alleles at 1 locus. The present paper reveals the presence of 2 more mating types in a sample of P. polycephalum derived from a different source and provides evidence that these are determined by 2 alleles at the same locus as the other 2. Evidence for the presence of other inherited factors affecting plasmodium formation, the mode of action of these factors and possible explanations for the occurrence of plasmodia in single-spore cultures are also discussed.  相似文献   

9.
10.
To facilitate the estimation of cell volume in uninucleate, naked amoebae (gymnamoebae) the relationship, log cell volume (µm3) = 0.882 + 3.117log nuclear diameter (µm3), is presented. This links mean cell volume to mean nuclear diameter and provides a useful tool for protozoan ecologists interested in estimating the biovolume of amoebae in laboratory or field samples. While it is virtually impossible to measure rigid axes from which volume can be calculated in these amorphous cells, it is relatively easy to measure the diameter of the nucleus in living or fixed material. This relationship has shown that most uninucleate amoebae surveyed have volumes ranging between only 188 µm3 and 2860 µm3; this range reflects the volumes of the majority of amoebae in the field. These small volumes are unexpected since many amoebae have locomotive forms greater than 20 µm in length giving the impression that their cell volumes should be correspondingly large. This is not the case, however, because most amoebae are extremely flat when viewed in profile. The small cell volume of most amoeba species has ecological implications when numerical data is transformed to biovolume and biomass units.  相似文献   

11.
In the heterothallic myxomycete Physarum polycephalum, uninucleate amoebae normally differentiate into syncytial plasmodia following heterotypic mating. In order to study the genetic control of this developmental process, mutations affecting the amoebal-plasmodial transition have been sought. Numerous mutants characterized by self-fertility have been isolated. The use of alkylating mutagens increases the mutant frequency over the spontaneous level but does not alter the mutant spectrum. Three spontaneous and 14 induced mutants have been analyzed genetically. In each, the mutation appears to be linked to the mating type locus. In three randomly selected mutants, the nuclear DNA content is the same in amoebae and plasmodia, indicating that amoebal syngamy does not precede plasmodium development in these strains. These results indicate that a highly specific type of mutational event, occurring close to or within the mating type locus, can abolish the requirement for syngamy normally associated with plasmodial differentiation. These mutations help define a genomic region regulating the switch from amoebal to plasmodial growth.  相似文献   

12.
During the life cycle of Physarum polycephalum, uninucleate amoebae develop into multinucleate syncytial plasmodia. These two cell types differ greatly in cellular organisation, behaviour and gene expression. Classical genetic analysis has identified the mating-type gene, matA, as the key gene controlling the initiation of plasmodium development, but nothing is known about the molecular events controlled by matA. In order to identify genes involved in regulating plasmodium formation, we constructed a subtracted cDNA library from cells undergoing development. Three genes that have their highest levels of expression during plasmodium development were identified: redA, redB (regulated in development) and mynD (myosin). Both redA and redB are single-copy genes and are not members of gene families. Although redA has no significant sequence similarities to known genes, redB has sequence similarity to invertebrate sarcoplasmic calcium-binding proteins. The mynD gene is closely related to type II myosin heavy-chain genes from many organisms and is one of a family of type II myosin genes in P. polycephalum. Our results indicate that many more red genes remain to be identified, some of which may play key roles in controlling plasmodium formation. Received: 21 June 1999 / Accepted: 17 August 1999  相似文献   

13.
In the acellular slime mold, Physarum polycephalum, the differentiation of amoebae into plasmodia is controlled by a mating type locus, mt. Amoebae carrying heterothallic alleles usually do not differentiate within clones; plasmodia form when two amoebae carrying different alleles fuse and undergo karyogamy. In this paper, we show that amoebae heterozygous for heterothallic alleles can be isolated and maintained as amoebae; the amoebae form plasmodia in clones without a change in ploidy. Plasmodia were also found to be formed, infrequently, by heterothallic amoebae of a single mating type. The plasmodia are healthy and are also formed without a change in ploidy. Thus, the presence of two different heterothallic mating type genes in a single nucleus is compatible with the amoebal state and one heterothallic mating type gene is compatible with the plasmodial state, once established.  相似文献   

14.
In heterothallic Myxomycetes, diploid plasmodia arise when haploid amoebae of two different mating types are cultured together. In this mating process, the amoebae fuse in pairs, and the resulting zygotes develop directly into plasmodia. It has been shown previously that plasmodia start to form in this fashion only when the growing amoebae in a mixed culture reach a critical density. We have investigated the cellular basis of this phenomenon by growing amoebae of different mating type separately from one another and then mixing them to test their mating ability. Amoebae from cultures above and below the critical density were, respectively, competent and incompetent to mate. Furthermore, both partners had to be competent in order for mating to occur. No binucleate cells were formed in mixtures of incompetent amoebae, indicating that they failed to fuse with one another. Incompetent amoebae growing at low density on filters with 0.2-μm pores became competent when the filters were placed on dense cultures of amoebae. We suggest that amoebae release a filter-transmissible material that accumulates during growth and induces the cells to become fusion competent.  相似文献   

15.
Genetic evidence has shown the presence of a common spindle pole organiser in Physarum amoebae and plasmodia. But the typical centrosome and mitosis observed in amoebae are replaced in plasmodia by an intranuclear mitosis devoid of any structurally defined organelle. The fate of gamma-tubulin and of another component (TPH17) of the centrosome of Physarum amoebae was investigated in the nuclei of synchronous plasmodia. These two amoebal centrosomal elements were present in the nuclear compartment during the entire cell cycle and exhibited similar relocalisation from metaphase to telophase. Three preparation methods showed that gamma-tubulin containing material was dispersed in the nucleoplasm during interphase. It constituted an intranuclear thread-like structure. In contrast, the TPH17 epitope exhibited a localisation close to the nucleolus. In late G2-phase, the gamma-tubulin containing elements condensed in a single organelle which further divided. Intranuclear microtubules appeared before the condensation of the gamma-tubulin material and treatment with microtubule poisons suggested that microtubules were required in this process. The TPH17 epitope relocalised in the intranuclear spindle later than the gamma-tubulin containing material suggesting a maturation process of the mitotic poles. The decondensation of the gamma-tubulin material and of the material containing the TPH17 epitope occurred immediately after telophase. Hence in the absence of a structurally defined centrosome homologue, the microtubule nucleating material undergoes a cycle of condensation and decondensation during the cell cycle.  相似文献   

16.
17.
Using a selfing strain of Physarum polycephalum that forms haploid plasmodia, we have isolated temperature-sensitive growth mutants in two ways. The negative selectant, netropsin, was used to enrich for temperature-sensitive mutants among a population of mutagenized amoebae, and, separately, a nonselective screening method was used to isolate plasmodial temperature-sensitive mutants among clonal plasmodia derived from mutagenized amoebae. Complementation in heterokaryons was used to sort the mutants into nine functional groups. When transferred to the restrictive temperature, two mutants immediately lysed, whereas the remainder slowed or stopped growing. Of the two lytic mutants, one affected both amoebae and plasmodia, and the other affected plasmodia alone. The growth-defective mutants were examined for protein and deoxyribonucleic acid synthesis and for aberrations in mitotic behavior. One mutant may be defective in both protein and deoxyribonucleic acid synthesis, and another only in deoxyribonucleic acid synthesis. The latter shows a striking reduction in the frequency of postmitotic reconstruction nuclei at the restrictive temperature. We believe that this mutant, MA67, is affected in a step in the nuclear replication cycle occurring late in G2. Execution of this step is necessary for both mitosis and chromosome replication.  相似文献   

18.
ABSTRACT. Heterovesicula cowani , n. g., n. sp., is a dimorphic microsporidium described from the adipose tissue of the Mormon cricket, Anabrus simplex Haldeman. Proliferation of the microsporidium is by karyokinesis of uninucleate and binucleate cells to form binucleate and tetranucleate cells, respectively. These cells will undergo binary fission (merogony). Ultimately, the meronts undergo karyokinesis without subsequent cytokinesis producing spherical multinucleate plasmodia that are transitional to 2 types of sporogony. Transitional to disporoblastic sporogony, a fragile interfacial envelope delaminates from the plasmodium with morphogenesis to a monfiliform plasmodium consisting of fusiform binucleate diplokaryotic sporonts. These undergo karyokinesis to form tetranucleate diplokaryotic sporonts that undergo cytokinesis during disintegration of the plasmodium into isolated binucleate sporonts. Transitional to octosporoblastic sporogony, multinucleate plasmodia disintegrate into short monofiliform plasmodia of diplokaryotic sporonts which then segregate while undergoing gradual nuclear dissociation (haplosis by nuclear dissociation). These undergo two sequences of karyokinesis and subsequent multiple fission to form eight uninucleate (haploid) sporoblasts in a fusiform arrangement within a persistent envelope. Binucleate spores are ovocylindrical, about 5.4 × 1.7 μm (fresh), with an isofilar polar filament singly coiled about 11 turns. Uninucleate spores are ovoid to slightly pyriform, 4.0 × 1.7 μm (fresh), with an isofilar filament singly coiled about 9 turns. A new family, Heterovesculidae, is proposed for the new genus.  相似文献   

19.
The DNA content in isolated nuclei of Amoeba proteus was determined for each of the three groups of synchronized amoebae over different intervals after division. Several nuclei of each amoeba group were fixed 1 h after division, before the amoebae were fed. About h after division, some amoebae in each group were given food (Tetrahymena pyriformis), while the rest were left starving. Samples of the nuclei of fed and starved amoebae were fixed 24 h and (in different groups) 42–55 h after division. In each group from 22 to 48% of the fed amoebae had divided prior to the last nuclei fixation. Starved amoebae did not undergo division. In all three amoeba groups the nuclear DNA content of fed cells by the end of interphase had increased to 280–300% the value for 1 h amoebae. The nuclear DNA content of starved amoebae of all three groups was also increased, and in two groups it exceeded the initial level more than two-fold. However, in all three groups, it was lower than that of fed amoebae. In all the groups the nuclear DNA content in fed amoebae grew after 24 h, i.e. during the second half of interphase, the increase accounting for from 11 to 48% of the total increase. The hypothesis is put forward that the increase in the nuclear DNA content during the cell cycle of Amoeba proteus is the result of two processes: (1) one-time replication of the DNA of the whole genome; and (2) repeated replication of some part of the DNA. In amoebae the relation of the pattern of nuclear DNA synthesis to the diet is considered.  相似文献   

20.
A new genus and species of the Protosteliida (Mycetozoa), Ceratiomyxella tahitiensis, was isolated from dead plant material—var. tahitiensis from Tahiti and var. neotropicalis from Brazil and Colombia. The sporocarps have deciduous spores borne singly on slender hollow stalks; zoocysts with anteriorly flagellate planonts are produced. The trophic stage is comprised of uninucleate to plurinucleate amoeboid cells and reticulate plasmodia; the uninucleate cells become flagellate in water. The prespore cells and spores are plurinucleate. Sexuality has not been demonstrated. Var. tahitiensis has globose spores and produces its zoocysts just after spore germination, whereas var. neotropicalis has subglobose spores and forms zoocysts later in the life cycle. The species is thought to show phylogenetic relationships with Ceratiomyxa, which was recently transferred to the Protosteliida by Olive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号