首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Athletes commonly attempt to enhance performance by training in normoxia but sleeping in hypoxia [live high and train low (LHTL)]. However, chronic hypoxia reduces muscle Na(+)-K(+)-ATPase content, whereas fatiguing contractions reduce Na(+)-K(+)-ATPase activity, which each may impair performance. We examined whether LHTL and intense exercise would decrease muscle Na(+)-K(+)-ATPase activity and whether these effects would be additive and sufficient to impair performance or plasma K(+) regulation. Thirteen subjects were randomly assigned to two fitness-matched groups, LHTL (n = 6) or control (Con, n = 7). LHTL slept at simulated moderate altitude (3,000 m, inspired O(2) fraction = 15.48%) for 23 nights and lived and trained by day under normoxic conditions in Canberra (altitude approximately 600 m). Con lived, trained, and slept in normoxia. A standardized incremental exercise test was conducted before and after LHTL. A vastus lateralis muscle biopsy was taken at rest and after exercise, before and after LHTL or Con, and analyzed for maximal Na(+)-K(+)-ATPase activity [K(+)-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase)] and Na(+)-K(+)-ATPase content ([(3)H]ouabain binding sites). 3-O-MFPase activity was decreased by -2.9 +/- 2.6% in LHTL (P < 0.05) and was depressed immediately after exercise (P < 0.05) similarly in Con and LHTL (-13.0 +/- 3.2 and -11.8 +/- 1.5%, respectively). Plasma K(+) concentration during exercise was unchanged by LHTL; [(3)H]ouabain binding was unchanged with LHTL or exercise. Peak oxygen consumption was reduced in LHTL (P < 0.05) but not in Con, whereas exercise work was unchanged in either group. Thus LHTL had a minor effect on, and incremental exercise reduced, Na(+)-K(+)-ATPase activity. However, the small LHTL-induced depression of 3-O-MFPase activity was insufficient to adversely affect either K(+) regulation or total work performed.  相似文献   

2.
The purpose of this study was to investigate the hypothesis that muscle Na+-K+-ATPase activity is directly related to Na+-K+-ATPase content and the content of the alpha2-catalytic isoform in muscles of different fiber-type composition. To investigate this hypothesis, tissue was sampled from soleus (Sol), red gastrocnemius (RG), white gastrocnemius (WG), and extensor digitorum longus (EDL) muscles at rest from 38 male Wistar rats weighing 413 +/- 6.0 g (mean +/- SE). Na+-K+-ATPase activity was determined in homogenates (Hom) and isolated crude membranes (CM) by the regenerating ouabain-inhibitable hydrolytic activity assay (ATPase) and the 3-O-methylfluorescein K+-stimulated phosphatase (3-O-MFPase) assay in vitro. In addition, Na+-K+-ATPase content (Bmax) and the distribution of alpha1-, alpha2-, beta1-, and beta2-isoforms were determined by [3H]ouabain binding and Western blot, respectively. For the ATPase assay, differences (P < 0.05) in enzyme activity between muscles were observed in Hom (EDL > WG) and in CM (Sol > EDL = WG). For the 3-O-MFPase assay, differences (P < 0.05) were also found for Hom (Sol > RG = EDL > WG) and CM (Sol = WG > RG). For Bmax, differences in the order of RG = EDL > Sol = WG (P < 0.05) were observed. Isoform distribution was similar between Hom and CM and indicated in CM, a greater density (P < 0.05) of alpha1 in Sol than WG and EDL (P < 0.05), but more equal distribution of alpha2 between muscles. The beta1 was greater (P < 0.05) in Sol and RG, and the beta2 was greater in EDL and WG (P < 0.05). Over all muscles, the correlation (r) between Hom 3-O-MFPase and Bmax was 0.45 (P < 0.05) and between Hom alpha2 and Bmax, 0.59 (P < 0.05). The alpha1 distribution correlated to Hom 3-O-MFPase (r = 0.79, P < 0.05) CM ATPase (r = 0.69, P < 0.005) and CM 3-O-MFPase activity (r = 0.32, P < 0.05). The alpha2 distribution was not correlated with any of the Na+-K+-ATPase activity measurements. The results indicate generally poor relationships between activity and total pump content and alpha2 isoform content of the Na+-K+-ATPase. Several factors, including the type of preparation and the type of assay, appear important in this regard.  相似文献   

3.
We investigated whether depressed muscle Na(+)-K(+)-ATPase activity with exercise reflected a loss of Na(+)-K(+)-ATPase units, the time course of its recovery postexercise, and whether this depressed activity was related to increased Na(+)-K(+)-ATPase isoform gene expression. Fifteen subjects performed fatiguing, knee extensor exercise at approximately 40% maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue, 3 h, and 24 h postexercise and analyzed for maximal Na(+)-K(+)-ATPase activity via 3-O-methylfluorescein phosphatase (3-O-MFPase) activity, Na(+)-K(+)-ATPase content via [(3)H]ouabain binding sites, and Na(+)-K(+)-ATPase alpha(1)-, alpha(2)-, alpha(3)-, beta(1)-, beta(2)- and beta(3)-isoform mRNA expression by real-time RT-PCR. Exercise [352 (SD 267) s] did not affect [(3)H]ouabain binding sites but decreased 3-O-MFPase activity by 10.7 (SD 8)% (P < 0.05), which had recovered by 3 h postexercise, without further change at 24 h. Exercise elevated alpha(1)-isoform mRNA by 1.5-fold at fatigue (P < 0.05). This increase was inversely correlated with the percent change in 3-O-MFPase activity from rest to fatigue (%Delta3-O-MFPase(rest-fatigue)) (r = -0.60, P < 0.05). The average postexercise (fatigue, 3 h, 24 h) alpha(1)-isoform mRNA was increased 1.4-fold (P < 0.05) and approached a significant inverse correlation with %Delta3-O-MFPase(rest-fatigue) (r = -0.56, P = 0.08). Exercise elevated alpha(2)-isoform mRNA at fatigue 2.5-fold (P < 0.05), which was inversely correlated with %Delta3-O-MFPase(rest-fatigue) (r = -0.60, P = 0.05). The average postexercise alpha(2)-isoform mRNA was increased 2.2-fold (P < 0.05) and was inversely correlated with the %Delta3-O-MFPase(rest-fatigue) (r = -0.68, P < 0.05). Nonsignificant correlations were found between %Delta3-O-MFPase(rest-fatigue) and other isoforms. Thus acute exercise transiently decreased Na(+)-K(+)-ATPase activity, which was correlated with increased Na(+)-K(+)-ATPase gene expression. This suggests a possible signal-transduction role for depressed muscle Na(+)-K(+)-ATPase activity with exercise.  相似文献   

4.
This study was designed to determine whether chronic heart failure (CHF) results in changes in Na(+)-K(+)-ATPase properties in heart and skeletal muscles of different fiber-type composition. Adult rats were randomly assigned to a control (Con; n = 8) or CHF (n = 8) group. CHF was induced by ligation of the left main coronary artery. Examination of Na(+)-K(+)-ATPase activity (means +/- SE) 12 wk after the ligation measured, using the 3-O-methylfluorescein phosphatase assay (3-O-MFPase), indicated higher (P < 0.05) levels in soleus (Sol) (250 +/- 13 vs. 179 +/- 18 nmol.mg protein(-1).h(-1)) and lower (P < 0.05) levels in diaphragm (Dia) (200 +/- 12 vs. 272 +/- 27 nmol.mg protein(-1).h(-1)) and left ventricle (LV) (760 +/- 62 vs. 992 +/- 16 nmol.mg protein(-1).h(-1)) in CHF compared with Con, respectively. Na(+)-K(+)-ATPase protein content, measured by the [(3)H]ouabain binding technique, was higher (P < 0.05) in white gastrocnemius (WG) (166 +/- 12 vs. 135 +/- 7.6 pmol/g wet wt) and lower (P < 0.05) in Sol (193 +/- 20 vs. 260 +/- 8.6 pmol/g wet wt) and LV (159 +/- 10 vs. 221 +/- 10 pmol/g wet wt) in CHF compared with Con, respectively. Isoform content in CHF, measured by Western blot techniques, showed both increases (WG; P < 0.05) and decreases (Sol; P < 0.05) in alpha(1). For alpha(2), only increases [red gastrocnemius (RG), Sol, and Dia; P < 0.05] occurred. The beta(2)-isoform was decreased (LV, Sol, RG, and WG; P < 0.05) in CHF, whereas the beta(1) was both increased (WG and Dia; P < 0.05) and decreased (Sol and LV; P < 0.05). For beta(3), decreases (P < 0.05) in RG were observed in CHF, whereas no differences were found in Sol and WG between CHF and Con. It is concluded that CHF results in alterations in Na(+)-K(+)-ATPase that are muscle specific and property specific. Although decreases in Na(+)-K(+)-ATPase content would appear to explain the lower 3-O-MFPase in the LV, such does not appear to be the case in skeletal muscles where a dissociation between these properties was observed.  相似文献   

5.
The purpose of this study was to investigate the hypothesis that reductions in Na+-K+- ATPase activity are associated with neuromuscular fatigue following isometric exercise. In control (Con) and exercised (Ex) legs, force and electromyogram were measured in 14 volunteers [age, 23.4 +/- 0.7 (SE) yr] before and immediately after (PST0), 1 h after (PST1), and 4 h after (PST4) isometric, single-leg extension exercise at ~60% of maximal voluntary contraction for 30 min using a 0.5 duty cycle (5-s contraction, 5-s rest). Tissue was obtained from vastus lateralis muscle before exercise in Con and after exercise in both the Con (PST0) and Ex legs (PST0, PST1, PST4), for the measurements of Na+-K+-ATPase activity, as determined by the 3-O-methylfluorescein phosphatase (3-O-MFPase) assay. Voluntary (maximal voluntary contraction) and elicited (10, 20, 50, 100 Hz) force was reduced 30-55% (P < 0.05) at PST0 and did not recover by PST4. Muscle action potential (M-wave) amplitude and area (measured in the vastus medialis) and 3-O-MFPase activity at PST0-Ex were less than that at PST0-Con (P < 0.05) by 37, 25, and 38%, respectively. M-wave area at PST1-Ex was also less than that at PST1-Con (P < 0.05). Changes in 3-O-MFPase activity correlated to changes in M-wave area across all time points (r = 0.38, P < 0.05, n = 45). These results demonstrate that Na+-K+- ATPase activity is reduced by sustained isometric exercise in humans from that in a matched Con leg and that this reduction in Na+-K+-ATPase activity is associated with loss of excitability as indicated by M-wave alterations.  相似文献   

6.
This study investigated whether fatiguing dynamic exercise depresses maximal in vitro Na(+)-K(+)-ATPase activity and whether any depression is attenuated with chronic training. Eight untrained (UT), eight resistance-trained (RT), and eight endurance-trained (ET) subjects performed a quadriceps fatigue test, comprising 50 maximal isokinetic contractions (180 degrees /s, 0.5 Hz). Muscle biopsies (vastus lateralis) were taken before and immediately after exercise and were analyzed for maximal in vitro Na(+)-K(+)-ATPase (K(+)-stimulated 3-O-methylfluoroscein phosphatase) activity. Resting samples were analyzed for [(3)H]ouabain binding site content, which was 16.6 and 18.3% higher (P < 0.05) in ET than RT and UT, respectively (UT 311 +/- 41, RT 302 +/- 52, ET 357 +/- 29 pmol/g wet wt). 3-O-methylfluoroscein phosphatase activity was depressed at fatigue by -13.8 +/- 4.1% (P < 0.05), with no differences between groups (UT -13 +/- 4, RT -9 +/- 6, ET -22 +/- 6%). During incremental exercise, ET had a lower ratio of rise in plasma K(+) concentration to work than UT (P < 0.05) and tended (P = 0.09) to be lower than RT (UT 18.5 +/- 2.3, RT 16.2 +/- 2.2, ET 11.8 +/- 0.4 nmol. l(-1). J(-1)). In conclusion, maximal in vitro Na(+)-K(+)-ATPase activity was depressed with fatigue, regardless of training state, suggesting that this may be an important determinant of fatigue.  相似文献   

7.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

8.
The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.  相似文献   

9.
Six human subjects performed one-legged knee extensor exercise (90 +/- 4 W) until fatigue (exercise time 4.6 +/- 0.8 min). Needle biopsies were obtained from vastus lateralis muscle before and immediately after exercise. Production of giant sarcolemmal vesicles from the biopsy material was used as a membrane purification procedure, and Na(+)-K(+) pump alpha- and beta-subunits were quantified by Western blotting. Exercise significantly increased (P < 0.05) the vesicular membrane content of the alpha(2)-, total alpha-, and beta(1)-subunits by 70 +/- 29, 35 +/- 10, and 26 +/- 5%, respectively. The membrane content of alpha(1) was not changed by exercise, and the densities of subunits in muscle homogenates were unchanged. The ratio of vesicular to crude muscle homogenate content of the alpha(2)-, total alpha-, and beta(1)-subunits was elevated during exercise by 67 +/- 33 (P < 0.05), 23 +/- 6 (P < 0.05), and 40 +/- 14% (P = 0.06), respectively. It is concluded that translocation of subunits is an important mechanism involved in the short time upregulation of the Na(+)-K(+) pumps in association with human muscle activity.  相似文献   

10.
To investigate the hypothesis that acclimatization to altitude would result in a downregulation in muscle Na(+)-K(+)-ATPase pump concentration, tissue samples were obtained from the vastus lateralis muscle of six volunteers (5 males and 1 female), ranging in age from 24 to 35 yr, both before and within 3 days after a 21-day expedition to the summit of Mount Denali, Alaska (6,194 m). Na(+)-K(+)-ATPase, measured by the [(3)H]ouabain-binding technique, decreased by 13.8% [348 +/- 12 vs. 300 +/- 7.6 (SE) pmol/g wet wt; P < 0.05]. No changes were found in the maximal activities (mol. kg protein(-1). h(-1)) of the mitochondrial enzymes, succinic dehydrogenase (3.63 +/- 0.20 vs. 3.25 +/- 0.23), citrate synthase (4. 76 +/- 0.44 vs. 4.94 +/- 0.44), and malate dehydrogenase (12.6 +/- 1. 8 vs. 12.7 +/- 1.2). Similarly, the expedition had no effect on any of the histochemical properties examined, namely fiber-type distribution (types I, IIA, IIB, IC, IIC, IIAB), area, capillarization, and succinic dehydrogenase activity. Peak aerobic power (52.3 +/- 2.1 vs. 50.6 +/- 1.9 ml. kg(-1). min(-1)) and body mass (76.9 +/- 3.7 vs. 75.5 +/- 2.9 kg) were also unaffected. We concluded that acclimatization to altitude results in a downregulation in muscle Na(+)-K(+)-ATPase pump concentration, which occurs without changes in oxidative potential and other fiber-type histochemical properties.  相似文献   

11.
To investigate the effects of hypoxia and incremental exercise on muscle contractility, membrane excitability, and maximal Na(+)-K(+)-ATPase activity, 10 untrained volunteers (age = 20 +/- 0.37 yr and weight = 80.0 +/- 3.54 kg; +/- SE) performed progressive cycle exercise to fatigue on two occasions: while breathing normal room air (Norm; Fi(O(2)) = 0.21) and while breathing a normobaric hypoxic gas mixture (Hypox; Fi(O(2)) = 0.14). Muscle samples extracted from the vastus lateralis before exercise and at fatigue were analyzed for maximal Na(+)-K(+)-ATPase (K(+)-stimulated 3-O-methylfluorescein phosphatase) activity in homogenates. A 32% reduction (P < 0.05) in Na(+)-K(+)-ATPase activity was observed (90.9 +/- 7.6 vs. 62.1 +/- 6.4 nmol.mg protein(-1).h(-1)) in Norm. At fatigue, the reductions in Hypox were not different (81 +/- 5.6 vs. 57.2 +/- 7.5 nmol.mg protein(-1).h(-1)) from Norm. Measurement of quadriceps neuromuscular function, assessed before and after exercise, indicated a generalized reduction (P < 0.05) in maximal voluntary contractile force (MVC) and in force elicited at all frequencies of stimulation (10, 20, 30, 50, and 100 Hz). In general, no differences were observed between Norm and Hypox. The properties of the compound action potential, amplitude, duration, and area, which represent the electromyographic response to a single, supramaximal stimulus, were not altered by exercise or oxygen condition when assessed both during and after the progressive cycle task. Progressive exercise, conducted in Hypox, results in an inhibition of Na(+)-K(+)-ATPase activity and reductions in MVC and force at different frequencies of stimulation; these results are not different from those observed with Norm. These changes occur in the absence of reductions in neuromuscular excitability.  相似文献   

12.
We tested the hypothesis that previously demonstrated gender differences in ACh-induced vascular relaxation could involve diverse Na(+)-K(+)-ATPase functions. We determined Na(+)-K(+)-ATPase by measuring arterial ouabain-sensitive 86Rb uptake in response to ACh. We found a significant increase of Na+ pump activity only in aortic rings from female rats (control 206 +/- 11 vs. 367 +/- 29 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.01). Ovariectomy eliminated sex differences in Na(+)-K(+)-ATPase function, and chronic in vivo hormone replacement with 17beta-estradiol restored the ACh effect on Na(+)-K(+)-ATPase. Because ACh acts by enhancing production of NO, we examined whether the NO donor sodium nitroprusside (SNP) mimics the action of ACh on Na(+)-K(+)-ATPase activity. SNP increased ouabain-sensitive 86Rb uptake in denuded female arteries (control 123 +/- 7 vs. 197 +/- 12 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.05). Methylene blue (an inhibitor of guanylate cyclase) and KT-5823 (a cGMP-dependent kinase inhibitor) blocked the stimulatory action of SNP. Exposure of female thoracic aorta to the Na+/K+ pump inhibitor ouabain significantly decreased SNP-induced and ACh-mediated relaxation of aortic rings. At the molecular level, Western blot analysis of arterial tissue revealed significant gender differences in the relative abundance of catalytic isoforms of Na(+)-K(+)-ATPase. Female-derived aortas exhibited a greater proportion of alpha2-isoform (44%) compared with male-derived aortas. Furthermore, estradiol upregulated the expression of alpha2 mRNA in male arterial explants. Our results demonstrate that enhancement of ACh-induced relaxation observed in female rats may be in part explained by 1) NO-dependent increased Na(+)-K(+)-ATPase activity in female vascular tissue and 2) greater abundance of Na(+)-K(+)-ATPase alpha2-isoform in females.  相似文献   

13.
Regulation of maximal Na(+)-K(+)-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (Vo(2)(peak)) of 44.8 +/- 1.9 ml.kg(-1).min(-1); mean +/- SE cycled at approximately 57% Vo(2)(peak) to fatigue during both NG (artificial sweeteners) and G (6.13 +/- 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased (P < 0.05) in G compared with NG (137 +/- 7 vs. 115 +/- 6 min). Maximal Na(+)-K(+)-ATPase activity (V(max)) as measured by the 3-O-methylfluorescein phosphatase assay (nmol.mg(-1).h(-1)) was not different between conditions prior to exercise (85.2 +/- 3.3 or 86.0 +/- 3.9), at 30 min (91.4 +/- 4.7 vs. 91.9 +/- 4.1) and at fatigue (92.8 +/- 4.3 vs. 100 +/- 5.0) but was higher (P < 0.05) in G at 90 min (86.7 +/- 4.2 vs. 109 +/- 4.1). Na(+)-K(+)-ATPase content (beta(max)) measured by the vanadate facilitated [(3)H]ouabain-binding technique (pmol/g wet wt) although elevated (P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher (P < 0.05) in G compared with NG. The G condition also resulted in higher (P < 0.05) serum insulin at similar time points to glucose and lower (P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in V(max) by mechanisms that are unclear.  相似文献   

14.
It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber type-specific changes in Na(+)-K(+)-ATPase activity in sarcolemmal membranes and in total membranes obtained from control rats and after 30 min of treadmill running. ATPase activity was measured at Na(+) concentrations of 0-80 mM and K(+) concentrations of 0-10 mM. K(m) and V(max) values were obtained from a Hill plot. K(m) for Na(+) was higher (lower affinity) in total membranes of glycolytic muscle (extensor digitorum longus and white vastus lateralis), when compared with oxidative muscle (red gastrocnemius and soleus). Treadmill running induced a significant decrease in K(m) for Na(+) in total membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex. The changes in Na(+)-K(+)-ATPase ion affinity are expected to influence muscle ion balance during muscle contraction.  相似文献   

15.
The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies.  相似文献   

16.
Despite its importance for placental function, syncytiotrophoblast Na(+)-K(+)-ATPase has not been studied in detail. We purified syncytiotrophoblast microvillous (MVM) and basal (BM) membranes from full-term human placenta. Western blotting with isoform-specific antibodies demonstrated the presence of the alpha(1)-subunit, but not the alpha(2)- or alpha(3)-subunits, in MVM and BM. Relative density per unit membrane protein in BM was 48 +/- 1% (mean +/- SE, n = 4, P < 0.02) of that in the MVM. The activity of Na(+)-K(+)-ATPase was lower in BM (1.4 +/- 0.14 micromol. mg(-1). min(-1), n = 8, P < 0.02) than in MVM (3.9 +/- 0.25 micromol. mg(-1). min(-1)). Immunocytochemistry confirmed the distribution of Na(+)-K(+)-ATPase to MVM and BM. These findings suggest that the syncytiotrophoblast represents a type of transporting epithelium different from the classical epithelia found in the small intestine and kidney, where Na(+)-K(+)-ATPase is confined to the basolateral membrane only. This unique polarization of the Na(+) pump does not, however, preclude a net transcellular transport of Na(+) to the fetus.  相似文献   

17.
The early plasticity of vastus lateralis Na(+)-K(+)-ATPase to the abrupt onset of prolonged submaximal cycling was studied in 12 untrained participants (Vo(2 peak) 44.8 +/- 2.0 ml x kg(-1) x min(-1), mean +/- SE) using a 6-day protocol (3 days of exercise plus 3 days of recovery). Tissue samples were extracted prior to (Pre) and following exercise (Post) on day 1 (E1) and day 3 (E3) and on each day of recovery (R1, R2, R3) and analyzed for changes in maximal protein (beta(max)) (vanadate-facilitated [(3)H]ouabain binding), alpha- and beta-isoform concentration (quantitative immunoblotting) and maximal Na(+)-K(+)-ATPase activity (V(max)) (3-O-methylfluorescein K(+)-stimulated phosphatase assay). For beta(max) (pmol/g wet wt), an increase (P < 0.05) of 11.8% was observed at R1 compared with E1-Pre (340 +/- 14 vs 304 +/- 17). For the alpha-isoforms alpha(1), alpha(2), and alpha(3), increases (P < 0.05) of 46, 42, and 31% were observed at R1, respectively. For the beta-isoform, beta(1) and beta(2) increased (P < 0.05) by 19 and 28% at R1, whereas beta(3) increased (P < 0.05) by 18% at R2. With the exception of alpha(2) and alpha(3), the increases in the isoforms persisted at R3. Exercise resulted in an average decrease (P < 0.05) in V(max) by 14.3%. No differences were observed in V(max) at E1 - Pre and E3 - Pre or between R1, R2, and R3. It is concluded that 3 days of prolonged exercise is a powerful stimulus for the rapid upregulation of the Na(+)-K(+)-ATPase subunit isoforms. Contrary to our hypothesis, the increase in subunit expression is not accompanied by increases in the maximal catalytic activity.  相似文献   

18.
This study investigated the effects of a 16-h protocol of heavy intermittent exercise on the intrinsic activity and protein and isoform content of skeletal muscle Na(+)-K(+)-ATPase. The protocol consisted of 6 min of exercise performed once per hour at approximately 91% peak aerobic power (Vo(2 peak)) with tissue sampling from vastus lateralis before (B) and immediately after repetitions 1 (R1), 2 (R2), 9 (R9), and 16 (R16). Eleven untrained volunteers with a Vo(2 peak) of 44.3 +/- 2.3 ml x kg(-1) x min(-1) participated in the study. Maximal Na(+)-K(+)-ATPase activity (V(max), in nmol x mg protein(-1) x h(-1)) as measured by the 3-O-methylfluorescein K(+)-stimulated phosphatase assay was reduced (P < 0.05) by approximately 15% with exercise regardless of the number of repetitions performed. In addition, V(max) at R9 and R16 was lower (P < 0.05) than at R1 and R2. Vanadate-facilitated [(3)H]ouabain determination of Na(+)-K(+)-ATPase content (maximum binding capacity, pmol/g wet wt), although unaltered by exercise, increased (P < 0.05) 8.3% by R9 with no further increase observed at R16. Assessment of relative changes in isoform abundance measured at B as determined by quantitative immunoblotting showed a 26% increase (P < 0.05) in the alpha(2)-isoform by R2 and a 29% increase in alpha(3) by R9. At R16, beta(3) was lower (P < 0.05) than at R2 and R9. No changes were observed in alpha(1), beta(1), or beta(2). It is concluded that repeated sessions of heavy exercise, although resulting in increases in the alpha(2)- and alpha(3)-isoforms and decreases in beta(3)-isoform, also result in depression in maximal catalytic activity.  相似文献   

19.
Phospholemman (PLM, FXYD1) is a partner protein and regulator of the Na(+)-K(+)-ATPase (Na(+)-K(+) pump). We explored the impact of acute and short-term training exercise on PLM physiology in human skeletal muscle. A group of moderately trained males (n = 8) performed a 1-h acute bout of exercise by utilizing a one-legged cycling protocol. Muscle biopsies were taken from vastus lateralis at 0 and 63 min (non-exercised leg) and 30 and 60 min (exercised leg). In a group of sedentary males (n = 9), we determined the effect of a 10-day intense aerobic cycle training on Na(+)-K(+)-ATPase subunit expression, PLM phosphorylation, and total PLM expression as well as PLM phosphorylation in response to acute exercise (1 h at ~72% Vo(2peak)). Biopsies were taken at rest, immediately following, and 3 h after an acute exercise bout before and at the conclusion of the 10-day training study. PLM phosphorylation was increased both at Ser(63) and Ser(68) immediately after acute exercise (75%, P < 0.05, and 30%, P < 0.05, respectively). Short-term training had no adaptive effect on PLM phosphorylation at Ser(63) and Ser(68), nor was the total amount of PLM altered posttraining. The protein expressions of α(1)-, α(2)-,and β(1)-subunits of Na(+)-K(+)-ATPase were increased after training (113%, P < 0.05, 49%, P < 0.05, and 27%, P < 0.05, respectively). Whereas an acute bout of exercise increased the phosphorylation of PKCα/βII on Thr(638/641) pre- and posttraining, phosphorylation of PKCζ/λ on Thr(403/410) was increased in response to acute exercise only after the 10-day training. In conclusion, we show that only acute exercise, and not short-term training, increases phosphorylation of PLM on Ser(63) and Ser(68), and data from one-legged cycling indicate that this effect of exercise on PLM phosphorylation is not due to systemic factors. Our results provide evidence that phosphorylation of PLM may play a role in the acute regulation of the Na(+)-K(+)-ATPase response to exercise.  相似文献   

20.
Alveolar epithelial cells effect edema clearance by transporting Na(+) and liquid out of the air spaces. Active Na(+) transport by the basolaterally located Na(+)-K(+)-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na(+)-K(+)-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na(+)-K(+)-ATPase activity, as assessed by (86)Rb(+) uptake. By 30 min and after 60 min, Na(+)-K(+)-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na(+) entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na(+)-K(+)-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na(+) entry into cells, demonstrated increased Na(+)-K(+)-ATPase activity. The changes in Na(+)-K(+)-ATPase activity were paralleled by increased Na(+)-K(+)-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na(+)-K(+)-ATPase activity, most likely by increasing intracellular Na(+) and by recruitment of Na(+)-K(+)-ATPase subunits from intracellular pools to the basolateral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号