首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lime application to aquatic systems may be an effective means of stressing macrophyte growth and promoting changes in species assemblage by inducing temporary dissolved inorganic carbon (DIC) limitation of productivity. Shoot and root growth response to lime (as Ca(OH)2) application was investigated for three macrophyte species (Elodea canadensis, Stuckenia pectinata, and Vallisneria americana) grown in experimental outdoor mesocosms. Lime was applied to mesocosms at three treatment levels to maintain pH for 1 week at 9.8–10.0 (1.64 mM), 10.3–10.5 (at the bicarbonate–carbonate equivalence point; 3.00 mM), and 10.8–11.0 (4.34 mM). pH recovered to control levels in all treated mesocosms 20 days after lime application. After treatment, HCO3 and DIC declined by 66, 93, and 93% and 60, 89, and 87%, respectively, versus increasing lime application. Concentrations remained lower in treated mesocosms versus the control throughout post-treatment. Differential growth response was observed in the 1.64 and 3.00 mM treatments, suggesting species-specific tolerances to both DIC concentration and form. V. americana was most sensitive to lime as the 1.64 mM treatment resulted in 54% shoot growth suppression versus the control and shoot plus root biomass loss in the 3.00 and 4.34 mM treatments. S. pectinata and E. canadensis exhibited net shoot and root growth (although significantly lower than controls) in both the 1.64 and 3.00 mM treatments and complete growth suppression in the 4.34 mM treatment. Selective control and shifts in species assemblage may be possible by adjusting lime concentration in relation to compensation point and needs to be investigated under field conditions.  相似文献   

2.
Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi, and to study community and ecosystem responses to CO2 and N enrichment. Responses of plants, AM fungi, phospholipid fatty acids and community-level physiological profiles were measured after two growing seasons. Ecosystem responses were examined by measuring net primary production (NPP), evapotranspiration, total soil organic matter (SOM), and extractable mineral N. Structural equation modeling was used to examine the causal relationships among treatments and response variables. We found that while CO2 and N tended to directly impact ecosystem functions (evapotranspiration and NPP, respectively), AM fungi indirectly impacted ecosystem functions by influencing the community composition of plants and other root fungi, soil fungi and soil bacteria. We found that the mycotrophic status of the dominant plant species in the mesocosms determined whether the presence of AM fungi increased or decreased NPP. Mycotrophic grasses dominated the mesocosm communities during the first growing season, and the mycorrhizal treatments had the highest NPP. In contrast, nonmycotrophic forbs were dominant during the second growing season and the mycorrhizal treatments had the lowest NPP. The composition of the plant community strongly influenced soil N, and the community composition of soil organisms strongly influenced SOM accumulation in the mesocosms. These results show how linkages between above- and belowground communities can determine ecosystem responses to global change.  相似文献   

3.
A mesocosm study was conducted to determine the effects of variable salinity and light on Vallisneria americana Michx. (wild celery) and associated algal community components in the lower St. Johns River, Florida. Fifteen centimeter diameter intact plant plugs were collected from the LSJR in March 2001 and transported to mesocosm facilities in Lafayette, Louisiana. A factorial experimental design was used consisting of three salinity levels (1, 8, and 18 ppt), three light levels (0, 50, and 90% shading), and three replicate mesocosms of each for a total of 27 mesocosms. The experiment consisted of a 4-week acclimation period followed by a 5-month treatment period. V. americana responded negatively to increased salinity. Although V. americana survived 8 ppt salinity, growth was limited. At 18 ppt, almost all V. americana aboveground biomass had perished within 10 weeks, but when salinity was lowered back to 1 ppt, approximately 20% of the aboveground biomass recovered within the following 10 weeks. At midtreatment harvest, light did not affect V. americana biomass directly (P = 0.8240), but by final harvest (20 weeks) light affected belowground biomass (P < 0.0014). Both salinity and light affected algal growth. Macroalgae dominated 1 ppt salinity treatments in ambient light, but phytoplankton dominated 8 and 18 ppt salinity treatments in ambient light. Algal communities were greatly inhibited by 90% shading. While salinity directly impacted V. americana growth and survival, light effects were less direct and involved algal community associations.  相似文献   

4.
Summary We began this experiment to test specific hypotheses regarding direct and indirect effects of fish predation on the littoral macroinvertebrate community of Bays Mountain Lake, Tennessee. We used 24 m2 enclosures in which we manipulated the presence and absence of large redear sunfish (Lepomis microlophus>150 mm SL), and small sunfish (L. macrochirus and L. microlophus <50 mm SL) over a 16-mo period. Here we report on effects of fish predation on gastropod grazers that appear to cascade to periphyton and macrophytes.Both large redear sunfish and small sunfish maintained low snail biomass, but snails in fish-free controls increased significantly during the first 2-mo of the experiment. By late summer of the first year of the experiment, the difference in biomass between enclosures with and without fish had increased dramatically (>10×). Midway through the second summer of the experiment, we noted apparent differences in the abundance of periphyton between enclosures containing fish and those that did not. We also noted differences in the macrophyte distribution among enclosures. To document these responses, we estimated periphyton cover, biovolume and cell size frequencies as well as macrophyte distributions among enclosures at the end of the experiment. When fish were absent, periphyton percent cover was significantly reduced compared to when fish were present. Periphyton cell-size distributions in enclosures without fish were skewed toward small cells (only 12% were greater than 200 m3), which is consistent with intense snail grazing. The macrophyte Najas flexilis had more than 60 x higher biomass in the fish-free enclosures than in enclosures containing fish; Potamogeton diversifolius was found only in fish-free enclosures. These results suggest a chain of strong interactions (i.e. from fish to snails to periphyton to macrophytes) that may be important in lake littoral systems. This contrasts sharply with earlier predictions based on cascading trophic interactions that propose that fish predation on snails would enhance macrophyte biomass.  相似文献   

5.
Allelopathic effects of the submerged macrophyte Potamogeton malaianus on Scenedesmus obliquus were assessed using a two-phase approach under controlled laboratory conditions. In the co-culture experiment (phase І), the growth of S. obliquus at two different initial cell densities was significantly inhibited by P. malaianus. Moreover, the growth inhibition was dependent on the biomass density of P. malaianus. Antioxidant enzymes (SOD, CAT and POD), MDA, APA, total soluble protein, protein electrophoretic pattern and morphology of S. obliquus were determined after the co-culture experiment was terminated. The activities of SOD, CAT, POD and APA at the low initial cell density were stimulated, the contents of MDA and total soluble protein were increased, and some special protein bands disappeared in P. malaianus treatments. The macrophyte had no effect on the activities of SOD and APA at the high initial cell density, but significantly influenced other physiological parameters of S. obliquus with the increase of biomass density. The morphology of S. obliquus showed no difference in the macrophyte treatments and the controls, and the cultures were dominated by 4-celled coenobia. The results indicated P. malaianus had significant allelopathic effects on the growth and physiological processes of S. obliquus. Moreover, the allelopathic effects depended on initial algal cell density, biomass density of the macrophyte, and their interaction. In the experiment of P. malaianus culture filtrates (phase II), filtrates from combined culture of plant and S. obliquus at the low initial cell density exhibited no apparent growth inhibitory effect on S. obliquus. The result showed that initial addition of growth-inhibiting plant filtrates had no allelopathic effect on S. obliquus. We concluded that the allelopathic effects on S. obliquus were found in the presence of P. malaianus, but not in P. malaianus filtrates. However, the absence of allelopathic effect on S. obliquus might be due to the very low concentrations of allelochemicals in the filtrates. Handling editor: S. M. Thomas  相似文献   

6.
Macrophyte net primary productivity (NPP) is a significant but understudied component of the carbon budget in large Amazonian floodplains. Annual NPP is determined by the interaction between stem elongation (vertical growth) and plant cover changes (horizontal expansion), each affected differently by flood duration and amplitude. Therefore, hydrological changes as predicted for the Amazon basin could result in significant changes in annual macrophyte NPP. This study investigates the responses of macrophyte horizontal expansion and vertical growth to flooding variability, and its possible effects on the contribution of macrophytes to the carbon budget of Amazonian floodplains. Monthly macrophyte cover was estimated using satellite imagery for the 2003–2004 and 2004–2005 hydrological years, and biomass was measured in situ between 2003 and 2004. Regression models between macrophyte variables and river‐stage data were used to build a semiempirical model of macrophyte NPP as a function of water level. Historical river‐stage records (1970–2011) were used to simulate variations in NPP, as a function of annual flooding. Vertical growth varied by a factor of ca. 2 over the simulated years, whereas minimum and maximum annual cover varied by ca. 3.5 and 1.5, respectively. Results suggest that these processes act in opposite directions to determine macrophyte NPP, with larger sensitivity to changes in vertical growth, and thus maximum flooding levels. Years with uncommonly large flooding amplitude resulted in the highest NPP values, as both horizontal expansion and vertical growth were enhanced under these conditions. Over the simulated period, annual NPP varied by ca. 1.5 (1.06–1.63 TgC yr?1). A small increasing trend in flooding amplitude, and by extension NPP, was observed for the studied period. Variability in growth rates caused by local biotic and abiotic factors, and the lack of knowledge on macrophyte physiological responses to extreme hydrological conditions remain the major sources of uncertainty.  相似文献   

7.
8.
This study examined the interaction and main-effect impacts of herbivory by the leaf-mining fly Hydrellia pakistanae and plant competition from Vallisneria americana on the growth, expansion and tuber formation of Hydrilla verticillata in a 2 × 2 factorial design experiment. The study was conducted in 14,000-L tanks, over two growing seasons. Each tank represented a single experimental unit and contained 32 1-L pots. At the beginning of the experiment half of these were planted with H. verticillata while the other half were either left empty or planted with V. americana (the competitor). H. pakistanae fly larvae (the herbivore) were added to tanks as appropriate. No significant interactions were identified between herbivory and competition on any parameter of H. verticillata growth analyzed (i.e., total tank biomass accumulation, total number of rooting stems, total tuber number, total tuber mass, and tuber size), indicating that the factors were operating independently and neither antagonism nor synergism was occurring. Both competition and herbivory impacted the growth of H. verticillata. H. verticillata plants grown in the presence of V. americana developed less total biomass, had fewer total basal stems, had fewer tubers and less tuber mass per tank, and produced significantly smaller tubers relative to control plants. Herbivory also suppressed H. verticillata biomass accumulation and tended to suppress the number and total mass of tubers produced in each tank. Both factors showed 30–40% reduction of total H. verticillata biomass, although the mechanism of impact was different. Competition suppressed expansion of H. verticillata into adjoining pots but had little impact on its growth in pots where it was originally planted. Herbivory resulted in a general suppression of growth of H. verticillata in all pots. Although herbivory significantly impacted H. verticillata biomass, it did not result in competitive release for V. americana under the current experimental conditions. We conclude that management activities that promote competition or herbivory will impact the growth and expansion of H. verticillata. Furthermore, since these factors operated independently, the combined use of both factors should be beneficial for suppression of H. verticillata dominance.  相似文献   

9.
The influence of nutrient additions and sediment exchange on Aureococcus anophagefferens growth was studied using 200 l mesocosms deployed in situ at the Southampton College Marine Science Center in Long Island, New York. A. anophagefferens cell density increased in mesocosms with separate additions of the following materials: urea + glucose and desiccation-stressed Enteromorpha tissue. A decrease in A. anophagefferens cell density was observed in mesocosms with either no additions (control) or with added nitrate. A treatment containing a sediment layer exhibited an increase in average cell densities, but the increase was not statistically significant (P = 0.15). In the 9 day experiment, net growth of A. anophagefferens was only observed during the last 3 days, which corresponded to a period of high solar irradiation. Total chlorophyll concentration declined in all treatments during the first 6 days, which corresponded to relatively low daily irradiance, suggesting low-light stress on the phytoplankton assemblage during the initial phase of the experiment. During the ensuing sunny period, a 4–5-fold increase in chlorophyll concentration was observed in the nitrate and urea treatments with lesser increases in the other treatments. A. anophagefferens density increased relative to total phytoplankton biomass (Chl basis) in the urea + glucose and Enteromorpha treatments. Results are consistent with a prevailing hypothesis that organic nitrogen nutrients favor the growth of A. anophagefferens. Specifically, our evidence indicates that A. anophagefferens exhibited net population growth under organic N, but not inorganic N nutrient (specifically NO3) loading.  相似文献   

10.
An example of ecosystem engineering gaining attention in aquatic systems is bioturbation, the disruption of sediment at the water–sediment interface due to burrowing and foraging. One consequence of bioturbation can be increased turbidity from suspended sediment, which generally inhibits macrophyte growth and reduces ecosystem functioning. Conversely, bioturbation may promote invertebrate species richness by unearthing dormant cysts. Temporary-pond crustaceans are not widely regarded as agents of bioturbation, but on the basis of aquaria observations we hypothesized that certain taxa can disturb the sediment and create highly turbid water. We tested this hypothesis by removing crustaceans from mesocosms lined with vernal pool soil. Compared to this treatment group, mesocosms containing crustaceans had extremely high turbidity from suspended sediment, as well as reduced total macrophyte cover. We also found clear compositional differences in macrophyte communities between treatments, driven largely by differences in water physicochemistry, including turbidity. Regression analysis linked most of the bioturbation to the endangered notostracan Lepidurus packardi Simon 1886, which was a strong predictor of turbidity in our mesocosms. We also found a trend toward increased crustacean species richness in our mesocosms in the presence of this taxon. An analysis of published data from King et al. (1996) suggests that this trend may extend to natural vernal pools. Overall, our results suggest that L. packardi may have large effects on vernal pool communities, likely mediated in part through its disturbing of the sediment.  相似文献   

11.
1. Recent experimental and field studies on temperate shallow lakes indicate that nitrogen may play a greater role in their functioning than previously thought. Several studies document that abundance and richness of submerged macrophytes, both central in shallow lake ecology, may decrease with increasing nitrogen loading, especially at high phosphorus levels. However, the role of nitrogen in warm lakes with fluctuating water regimes remains to be described in detail. 2. The effect of increasing nitrate and phosphate concentrations on submerged macrophyte growth was examined in a 3‐month mesocosm experiment conducted in summer in a shallow freshwater lake on the north western coast of Turkey with a Mediterranean climate. Twenty four field mesocosms, open to the sediment and atmosphere, were stocked with Myriophyllum spicatum shoots and small cyprinid fish. Three nitrate loadings in combination with two phosphate loadings were applied in a fourfold replicated design. 3. Mean ± SD nutrient concentrations maintained throughout the experiment were 0.55 ± 0.17, 2.2 ± 0.97, 9.2 ± 5.45 mg L?1 total nitrogen and 55 ± 19.2, 73 ± 22.9 μg L?1 total phosphorus. Mean periphyton biomass increased with increasing nutrient concentrations and peaked at the highest nitrogen and phosphorus loadings, while the mean phytoplankton biomass remained relatively low in all treatments. 4. Percent volume inhabited (% PVI) by macrophytes throughout the experiment and total macrophyte biomass at the end of the experiment did not differ among treatments. In addition to stocked M. spicatum, Ceratophyllum demersum and Potamogeton crispus appeared in the majority of the mesocosms. The plants grew continuously up to 50% PVI throughout the experiment and remained resilient to shading provided by periphyton and phytoplankton. 5. The mean summer air temperature in 2007 was 2.2 °C higher than the average of the last 32 years, which resulted in a water level decrease of 0.3 m in the mesocosms over three months. This might have counteracted the shading of submerged macrophytes provided by phytoplankton and periphyton. The results of the experiment are consistent with observations of higher macrophyte resilience to nutrient loading in Mediterranean lakes compared with northern temperate lakes.  相似文献   

12.
We conducted a factorial experiment, in outdoor mesocosms, on the effects of zebra mussels and water column mixing (i.e., turbulence) on the diet, growth, and survival of larval fathead minnows (Pimephales promelas). Significant (P<0.05) larval mortality occurred by the end of the experiment with the highest mortality (90%) occurring in the presence of both turbulence and zebra mussels, whereas mortality was 37% in treatment with turbulence and 17% and 18% in the zebra mussels treatment, and the control, respectively. The size of individual fish was significantly different among treatments at the end of the experiment and was inversely related to survival. Levels of trophic resources (i.e., phyto and zooplankton) varied among treatments and were treatment specific. Turbulent mixing facilitated removal of phytoplankton by zebra mussels by making the entire water column of the tanks available to these benthic filter feeders. Early in the experiment (Day = 0 to 14) the physical process of turbulent mixing likely caused a reduction in standing stocks of zooplankton. The interactive effect of turbulence and mussels reduced copepod and rotifer stocks, through physical processes and through filtration by zebra mussels, relative to the turbulence treatment. The reductions in the number of total zooplankton in the turbulent mixing mesocosms and the further reduction of rotifer and copepod in the turbulence and mussels treatment coincided with a period of increased reliance of larval fathead minnows on these prey. Estimates of consumption from bioenergetics modeling and measured prey standing stocks indicated caloric resources of suitable prey in turbulence treatments during the early weeks of the experiment were insufficient to prevent starvation. Early mortality in the turbulence and mussels treatment likely released surviving fish from intense intraspecific competition and resulted in higher individual growth rates. A combination of high abundance of zebra mussels in an environment with a well-mixed water column can have significant effects on larval fish survival and growth.  相似文献   

13.
Possible allelopathic effects of substances released from the macrophytes Chara globularis, Elodea canadensis, Myriophyllum spicatum on the common green alga Scenedesmus obliquus were tested in the laboratory with plastic plants and untreated medium as controls. A two-phase approach was used in which first the effects of physical presence of plants was studied (phase I) followed by the effects of plant culture filtrates (phase II). In the presence of plastic plants growth was reduced only marginally, but strong growth inhibition of Scenedesmus occurred in the physical presence of all macrophytes. In contrast, filtrates from Chara had no growth inhibitory effect on Scenedesmus. Myriophyllum filtrate reduced particle-based growth rate by 7% compared to filtration controls, while Elodea culture filtrate reduced volume-based growth by 12%, chlorophyll-based growth by 28% and particle-based growth by 15%. Photosystem II-efficiency of Scenedesmus was reduced in all three macrophyte treatments in phase I, but not in filtrates from macrophyte cultures (phase II). Thus, while enzyme activity or other physiological aspects may have been affected, the current study yielded no proof for allelopathically active compounds being directed at photosynthesis. Mean particle volume (MPV) of Scenedesmus was not influenced by macrophyte exudates and cultures remained dominated by unicells. The strong growth inhibitory effects found for Scenedesmus in the physical presence of macrophytes, but not in plastic controls, and no or weaker response in nutrient-enriched filtrates, suggest nutrient competition was a more powerful driving factor than allelochemicals. However, the experimental design does not exclude disappearance of allelochemicals during the filtration process.  相似文献   

14.
Global declines of amphibian populations are well documented, yet effects of these declines on freshwater ecosystem structure and function are poorly understood. Here we examine responses of algal primary producers to tadpole extirpation over differing spatial and temporal scales. We experimentally excluded tadpoles from artificial substrata within localized areas (0.25 m2) of two streams. One stream had an intact community of frogs (frog stream), and the other had recently experienced a catastrophic decline (frogless stream), leaving virtually no tadpoles. In the frog stream, there were significantly greater levels of chlorophyll a (+111%, P = 0.009), ash-free dry mass (AFDM) (+163%, P = 0.02), inorganic sediments (+114%, P = 0.001), and higher mean algal cell biovolume in tadpole exclusion treatments than in the tadpole access treatments. Correspondingly, overall AFDM-specific net primary production (NPP) increased by 38% (P = 0.001) and chlorophyll a-specific NPP increased by 29% (P = 0.001) in tadpole access treatments compared to tadpole exclusion treatments. Areal-specific NPP did not differ between treatments. There were no significant differences in chlorophyll a, AFDM, inorganic sediments, algal cell biovolume, or biomass-specific NPP between treatments in the frogless stream. Fifteen months after our experiments, a massive amphibian decline associated with a fungal pathogen occurred in the frog stream, resulting in the extirpation of over 90% of tadpoles. This extirpation was followed by significant increases in levels of chlorophyll a (269%, P = 0.001), AFDM (+220%, P < 0.001), and inorganic sediments (+140%, P = 0.001). Reach-scale NPP increased from −1587 to −810 mg DO m−2 d−1. Additionally, algal community composition shifted from a dominance of small adnate diatoms (pre-decline) to a dominance of large upright algal species (post-decline). Our experimental results, combined with algal monitoring at the reach scale, indicate that over the course of our study catastrophic amphibian losses have significant effects on stream ecosystem structure and function. Ecosystem-level impacts of tadpole extirpations were more dramatic than results from our small-scale, short-term experiments, which predicted the direction of change in response variables but underestimated the magnitude. However, the long-term stream ecosystem responses remain unknown. Author Contributions: S.C., C.M.P., M.R.W., K.R.L., and S.K. designed the study, S.C., C.M.P., R.B., M.R.W., K.R.L., and A.D.H. performed research, S.C., C.M.P., R.J.B., M.R.W., and A.D.H. analyzed data. S.C., C.M.P., and R.J.B. wrote the paper.  相似文献   

15.
The utility of shallow water bodies in urban environments is frequently compromised either by dense beds of submerged plants or cyanobacterial blooms associated with nutrient enrichment. Although submerged plants are often harvested to facilitate recreational uses, this activity may alter the phytoplankton community, which in turn, also may restrict the use of the lake. We tested whether (i) plant harvesting reduced the abundance of flagellate algae and increased the abundance of cyanobacteria, and (ii) whether increasing levels of nutrient enrichment caused shifts in the dominance of heterocytous cyanobacteria, non-heterocytous cyanobacteria and Chlorophyta, in a shallow urban lake in Southern Australia as has been observed for shallow Danish lakes in previous studies. These predictions were tested with large (3000 l), replicated mesocosms in a warm, highly productive, shallow lake densely colonised by the submerged angiosperm, Vallisnaria americana Michaux. The heterokont algae, Chlorophyta, Cyanobacteria and Cryptophyta were the most numerous algal divisions in the lake. The Euglenophyta, although uncommon in early summer, became more abundant towards the end of summer. The Dinophyta and Charophyta were rare. The abundance of the heterokont algae and Euglenophyta was significantly reduced by plant harvesting even after plants had partially re-established 18 weeks after initial harvesting. The decline in the Euglenophyta in response to plant harvesting is consistent with earlier findings, that the relative abundance of flagellate algae tends to be greater in the presence of submerged plants. Contrary to our prediction, we found that the Cyanobacteria did not increase in response to plant harvesting, however the response may be altered under higher nutrient levels. Algal responses to nutrient enrichment in the presence of dense V. americana plants generally followed the patterns observed in shallow Danish lakes despite the large differences in climatic conditions. Both studies found that the abundance of heterocytous cyanobacteria declined at higher levels of nutrient enrichment, whereas non-heterocytous cyanobacteria and chlorophytes increased.  相似文献   

16.
In order to assess the effects of the introduced bivalve Limnoperna fortunei on water-column properties of Salto Grande reservoir, experiments were conducted using six 400 L mesocosms: 2 with 100 mussels, 2 with 300 mussels, and 2 controls (without mussels). At 0, 1, 2, 3, 7, 14, 21, 28, and 35 days we measured nutrient and chlorophyll a concentrations, counted and identified the phytoplankton, and estimated the density, size, and number of cells of the colonies of Microcystis spp. Cumulative periphyton growth and total accumulated sediments were assessed in all enclosures at the end of the experiment. Throughout the experiment, in the controls ammonia and phosphates dropped to near zero, whereas in the mesocosms with L. fortunei they increased two- to tenfold. Nitrates decreased in all mesocosms. In the presence of the mussel, chlorophyll a and algal cells dropped until day 3 increasing thereafter, whereas in the controls they increased from day 0. Periphyton growth and sediment accumulation were significantly higher in the mesocosms with mussels that in the controls. Cell density, proportion of colonial cells and colony size of Microcystis spp. increased in all enclosures, but these increases were dramatically (and very significantly) higher in enclosures with 100 and, especially, with 300 mussels, than in the controls. Our results indicate that L. fortunei modifies nutrient concentrations and proportions, and promotes aggregation of solitary Microcystis spp. cells into colonies; both these effects can favor blooms of this often noxious cyanobacteria.  相似文献   

17.
Verb  Robert G.  Casamatta  Dale A.  Vis  Morgan L. 《Hydrobiologia》2001,455(1-3):111-120
We investigated the response of an algal assemblage to different vegetative substrates in controlled vernal mesocosms. Litter was collected from four vascular plant communities (Deciduous Forest, Macrophyte, Old Field and Pinus stands) and the litter was used to line the benthos of the vernal mesocosms. The development and response of the algal assemblage in treatment and control mesocosms was tracked biweekly for a period of 56 days. A repeated-measure MANOVA and Bonferroni (Dunn) post-hoc test indicated that the Pinus treatment produced a significantly greater biomass than all other treatments. The Pinus treatment mesocosms had acidic (4.5–4.7) water when sampled on day 42, which continued until the completion of the study. The greatest levels of species richness and diversity were recorded from the Deciduous Forest and Old Field treatments. Algal assemblage analyses indicated that there was much overlap in community structure between various litter treatments and algae alone (no litter). Most of the vernal mesocosm treatments were dominated by the filamentous chlorophytes Mougeotia, Oedogonium and Ulothrix. These results suggest that, in this study, the vegetative litter of vernal mesocosms (with the exception of Pinus) exhibits limited independent influence on the developmental trajectories of algal communities.  相似文献   

18.
黄兴召  许崇华  徐俊  陶晓  徐小牛 《生态学报》2017,37(7):2274-2281
通过收集155篇644条杉木林生产力数据,利用结构方程模型,分析杉木林净初级生产力与年均降雨量、年均温度、林分密度和林龄之间的关系。结果表明:杉木林净生产力与年均降水量和年均温度呈显著正相关,相关系数分别为0.63和0.378。杉木林净生产力与林龄和林分密度呈显著负相关,相关系数分别为-0.332和-0.408。结构方程模型较好的解析了杉木净初级生产力与环境因子和林分因子之间的关系。杉木林净生产力与年均降水量、年均温度、林龄、林分密度都有影响,其总通径系数分别为0.398(P0.01)、0.746(P0.01)、-0.321(P0.01)和-0.738(P0.01)。年均温度和林龄不仅直接影响杉木林净生产力,还通过影响年均降水量和林分密度间接影响林分净生产力。年均温度和林龄的直接通径系数分别为0.494(P0.01)和-0.700(P0.01);年均温度和林龄的间接通径系数分别为0.252(P0.05)和0.379(P0.05)。结构方程作为大尺度分析净初级生产力的方法,杉木林净初级生产力影响因素的62%来自年均降水量、年均温度、林龄和林分密度。  相似文献   

19.
1. While phosphorus (P) is often considered the most important growth limiting factor for plants in lakes, recent studies of shallow lakes indicate that nitrogen (N) may be of greater importance than realized hitherto and that submerged macrophytes may be lost when the N concentration exceeds a certain threshold, as long as the concentration of P is sufficiently high. 2. We studied the effects of different loadings of NH4‐N and NO3‐N on chlorophyll a and on a macrophyte tolerant of eutrophication, Vallisneria spinulosa (Hydrocharitaceae). In outdoor mesocosms we used water from a pond as control and created four levels of NH4‐N and NO3‐N (approximately 2.5, 5, 7.5 and 10 mg L−1) by dosing with NH4Cl and NaNO3, respectively. After the experiment, the plants were transferred back to a holding pond to study their recovery. In contrast to previous research, we used a low background concentration of phosphorus (TP 0.024 ± 0.003 mg L−1) so we could judge whether any effects of N were apparent when P is in short supply. 3. Chlorophyll a increased significantly with N dosing for both forms of N, but the increase was highest in the NH4‐N dosed mesocosms (maximum 58 μg L−1 versus 42 μg L−1 in the NO3‐N mesocosms), probably due to a higher total inorganic N concentration (part of the added ammonia was converted to nitrate during the experiment). 4. Although the number of ramets of V. spinulosa was not affected by the N treatment, the biomass increased up to concentrations of 7.5 mg L−1, while biomass at 10 mg L−1 remained at the control level for both N ions treatments. A similar pattern was apparent for the content of N and soluble sugar of the plant, while there were no differences in the plant P content among treatments. Five months after transplantation back to the pond no difference was found in the number of ramets or in biomass, except that the biomass of plants grown at 10 mg N L−1 during the experiment was greater than that in the control, while the N and P contents of plants were similar to those of the controls. 5. Nitrogen concentration had little influence on the growth of the eutrophication tolerant submerged macrophyte at moderately low concentrations of phosphorus. Moreover, the two N ions showed no toxic effects, suggesting that loss of macrophytes observed in other studies, run at higher phosphorus concentrations, was probably related to enhanced shading by periphyton and/or phytoplankton rather than to any toxic effects of N.  相似文献   

20.
The New Zealand mud snail Potamopyrgus antipodarum (Hydrobiidae) and the pulmonate Physella acuta (Physidae) have invaded freshwaters in many parts of the world and become established. They co-exist in many streams, lakes and ponds in New Zealand, often at high densities. In the present study the effects of intraspecific- and interspecific interactions between the two species on growth and reproductive output were examined in laboratory mesocosms. In 30-day experiments, growth of Potamopyrgus antipodarum was lower in high density treatments than controls providing evidence for competition at higher densities of both snail species. No competitive effect was obtained for Physella acuta when controls were compared with high-density treatments, but growth was reduced at high densities of conspecifics. Numbers of juveniles released by Potamopyrgus antipodarum in 40 day trials declined at high snail densities and were lowest at high densities of conspecifics. Egg production by Physella acuta was also reduced at high snail densities. However, when the two species were kept together at equal densities (total snail density twice that of controls), egg production by Physella acuta was significantly higher than in all other treatments, suggesting facilitation by the congenor. Lastly, in a 10-day experiment, Physella acuta grew faster in water conditioned by Potamopyrgus antipodarum than in Physa-conditioned water, whereas Potamopyrgus antipodarum showed no growth response to Physella-conditioned water. Overall, our results indicate that growth and reproductive output of both snail species are influenced more by the density of conspecifics than the presence and density of the other species. The successful co-existence of the two species in New Zealand freshwaters therefore may be a reflection, at least in part, of few competitive interactions between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号