首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationships among gene expression levels may be associated with the mechanisms of the disease. While identifying a direct association such as a difference in expression levels between case and control groups links genes to disease mechanisms, uncovering an indirect association in the form of a network structure may help reveal the underlying functional module associated with the disease under scrutiny. This paper presents a method to improve the biological relevance in functional module identification from the gene expression microarray data by enhancing the structure of a weighted gene co-expression network using minimum spanning tree. The enhanced network, which is called a backbone network, contains only the essential structural information to represent the gene co-expression network. The entire backbone network is decoupled into a number of coherent sub-networks, and then the functional modules are reconstructed from these sub-networks to ensure minimum redundancy. The method was tested with a simulated gene expression dataset and case-control expression datasets of autism spectrum disorder and colorectal cancer studies. The results indicate that the proposed method can accurately identify clusters in the simulated dataset, and the functional modules of the backbone network are more biologically relevant than those obtained from the original approach.  相似文献   

2.
EXCAVATOR: a computer program for efficiently mining gene expression data   总被引:1,自引:0,他引:1  
Xu D  Olman V  Wang L  Xu Y 《Nucleic acids research》2003,31(19):5582-5589
Massive amounts of gene expression data are generated using microarrays for functional studies of genes and gene expression data clustering is a useful tool for studying the functional relationship among genes in a biological process. We have developed a computer package EXCAVATOR for clustering gene expression profiles based on our new framework for representing gene expression data as a minimum spanning tree. EXCAVATOR uses a number of rigorous and efficient clustering algorithms. This program has a number of unique features, including capabilities for: (i) data- constrained clustering; (ii) identification of genes with similar expression profiles to pre-specified seed genes; (iii) cluster identification from a noisy background; (iv) computational comparison between different clustering results of the same data set. EXCAVATOR can be run from a Unix/Linux/DOS shell, from a Java interface or from a Web server. The clustering results can be visualized as colored figures and 2-dimensional plots. Moreover, EXCAVATOR provides a wide range of options for data formats, distance measures, objective functions, clustering algorithms, methods to choose number of clusters, etc. The effectiveness of EXCAVATOR has been demonstrated on several experimental data sets. Its performance compares favorably against the popular K-means clustering method in terms of clustering quality and computing time.  相似文献   

3.
The intestinal crypt/villus in situ hybridization database (CVD) query interface is a web-based tool to search for genes with similar relative expression patterns along the crypt/villus axis of the mammalian intestine. The CVD is an online database holding information for relative gene expression patterns in the mammalian intestine and is based on the scoring of in situ hybridization experiments reported in the literature. CVD contains expression data for 88 different genes collected from 156 different in situ hybridization profiles. The web-based query interface allows execution of both single gene queries and pattern searches. The query results provide links to the most relevant public gene databases. AVAILABILITY: http://pc113.imbg.ku.dk/ps/  相似文献   

4.
GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox   总被引:26,自引:0,他引:26  
High-throughput gene expression analysis has become a frequent and powerful research tool in biology. At present, however, few software applications have been developed for biologists to query large microarray gene expression databases using a Web-browser interface. We present GENEVESTIGATOR, a database and Web-browser data mining interface for Affymetrix GeneChip data. Users can query the database to retrieve the expression patterns of individual genes throughout chosen environmental conditions, growth stages, or organs. Reversely, mining tools allow users to identify genes specifically expressed during selected stresses, growth stages, or in particular organs. Using GENEVESTIGATOR, the gene expression profiles of more than 22,000 Arabidopsis genes can be obtained, including those of 10,600 currently uncharacterized genes. The objective of this software application is to direct gene functional discovery and design of new experiments by providing plant biologists with contextual information on the expression of genes. The database and analysis toolbox is available as a community resource at https://www.genevestigator.ethz.ch.  相似文献   

5.
The complexity of biological processes such as cell differentiation is reflected in dynamic transitions between cellular states. Trajectory inference arranges the states into a progression using methodologies propelled by single-cell biology. However, current methods, all returning a best trajectory, do not adequately assess statistical significance of noisy patterns, leading to uncertainty in inferred trajectories. We introduce a tree dimension test for trajectory presence in multivariate data by a dimension measure of Euclidean minimum spanning tree, a test statistic, and a null distribution. Computable in linear time to tree size, the tree dimension measure summarizes the extent of branching more effectively than globally insensitive number of leaves or tree diameter indifferent to secondary branches. The test statistic quantifies trajectory presence and its null distribution is estimated under the null hypothesis of no trajectory in data. On simulated and real single-cell datasets, the test outperformed the intuitive number of leaves and tree diameter statistics. Next, we developed a measure for the tissue specificity of the dynamics of a subset, based on the minimum subtree cover of the subset in a minimum spanning tree. We found that tissue specificity of pathway gene expression dynamics is conserved in human and mouse development: several signal transduction pathways including calcium and Wnt signaling are most tissue specific, while genetic information processing pathways such as ribosome and mismatch repair are least so. Neither the tree dimension test nor the subset specificity measure has any user parameter to tune. Our work opens a window to prioritize cellular dynamics and pathways in development and other multivariate dynamical systems.  相似文献   

6.
GoSurfer   总被引:2,自引:0,他引:2  
The analysis of complex patterns of gene regulation is central to understanding the biology of cells, tissues and organisms. Patterns of gene regulation pertaining to specific biological processes can be revealed by a variety of experimental strategies, particularly microarrays and other highly parallel methods, which generate large datasets linking many genes. Although methods for detecting gene expression have improved substantially in recent years, understanding the physiological implications of complex patterns in gene expression data is a major challenge. This article presents GoSurfer, an easy-to-use graphical exploration tool with built-in statistical features that allow a rapid assessment of the biological functions represented in large gene sets. GoSurfer takes one or two list(s) of gene identifiers (Affymetrix probe set ID) as input and retrieves all the Gene Ontology (GO) terms associated with the input genes. GoSurfer visualises these GO terms in a hierarchical tree format. With GoSurfer, users can perform statistical tests to search for the GO terms that are enriched in the annotations of the input genes. These GO terms can be highlighted on the GO tree. Users can manipulate the GO tree in various ways and interactively query the genes associated with any GO term. The user-generated graphics can be saved as graphics files, and all the GO information related to the input genes can be exported as text files. AVAILABILITY: GoSurfer is a Windows-based program freely available for noncommercial use and can be downloaded at http://www.gosurfer.org. Datasets used to construct the trees shown in the figures in this article are available at http://www.gosurfer.org/download/GoSurfer.zip.  相似文献   

7.
Two numerical taxonomic methods, cluster analysis and minimum spanning tree, were applied to classify 20 Nigerian cultivars of yellow yam (Dioscorea cayenensis). Cultivars were grown for 3 yr and 49 plant characters observed. The results were summarised as a dendrogram and an undirected minimum spanning tree. The classifications from both methods were complementary and facilitated a better understanding of the phenetic similarity between cultivars. Four main clusters were revealed with different intra-cluster variation. The clustering pattern was not remarkably affected by the two classificatory methods employed.  相似文献   

8.
9.
The gene coexpression study has emerged as a novel holistic approach for microarray data analysis. Different indices have been used in exploring coexpression relationship, but each is associated with certain pitfalls. The Pearson's correlation coefficient, for example, is not capable of uncovering nonlinear pattern and directionality of coexpression. Mutual information can detect nonlinearity but fails to show directionality. The coefficient of determination (CoD) is unique in exploring different patterns of gene coexpression, but so far only applied to discrete data and the conversion of continuous microarray data to the discrete format could lead to information loss. Here, we proposed an effective algorithm, CoexPro, for gene coexpression analysis. The new algorithm is based on B-spline approximation of coexpression between a pair of genes, followed by CoD estimation. The algorithm was justified by simulation studies and by functional semantic similarity analysis. The proposed algorithm is capable of uncovering both linear and a specific class of nonlinear relationships from continuous microarray data. It can also provide suggestions for possible directionality of coexpression to the researchers. The new algorithm presents a novel model for gene coexpression and will be a valuable tool for a variety of gene expression and network studies. The application of the algorithm was demonstrated by an analysis on ligand-receptor coexpression in cancerous and noncancerous cells. The software implementing the algorithm is available upon request to the authors.  相似文献   

10.
Choosing among alternative trees of multigene families   总被引:4,自引:0,他引:4  
Estimation of gene trees is the first step in testing alternative hypotheses about the evolution of multigene families. The standard practice for inferring gene family history is to construct trees that meet some objective criteria based on the fit of the character state changes (nucleotide or amino acid changes) to the gene tree. Unfortunately, analysis of character state data can be misleading. In addition, this approach ignores information about the relationships of the species from which the genes have been sampled. In this paper I explore using statistics of fit between the character data and gene trees and the reconciliation of the gene and species trees for choosing among alternative evolutionary hypotheses of gene families. In particular, I advocate a two-pronged strategy for choosing among alternative gene trees. First, the character data are used to define a set of acceptable gene trees (i.e., trees that are not significantly different from the minimum length tree). Next, the set of acceptable gene trees is reconciled with a known species tree, and the gene tree requiring the fewest number of gene duplications and losses is adopted as the best estimate of evolutionary history. The approach is illustrated using three gene families: BMP, EGR, and LDH.  相似文献   

11.
Phylogenies based on gene content rely on statements of primary homology to characterize gene presence or absence. These statements (hypotheses) are usually determined by techniques based on threshold similarity or distance measurements between genes. This fundamental but problematic step can be examined by evaluating each homology hypothesis by the extent to which it is corroborated by the rest of the data. Here we test the effects of varying the stringency for making primary homology statements using a range of similarity (e-value) cutoffs in 166 fully sequenced and annotated genomes spanning the tree of life. By evaluating each resulting data set with tree-based measurements of character consistency and information content, we find a set of homology statements that optimizes overall corroboration. The resulting data set produces well-resolved and well-supported trees of life and greatly ameliorates previously noted inconsistencies such as the misclassification of small genomes. The method presented here, which can be used to test any technique for recognizing primary homology, provides an objective framework for evaluating phylogenetic hypotheses and data sets for the tree of life. It also can serve as a technique for identifying well-corroborated sets of homologous genes for functional genomic applications.  相似文献   

12.
One of the important goals of biology is to understand the relationship between DNA sequence information and nonlinear cellular responses. This relationship is central to the ability to effectively engineer cellular phenotypes, pathways, and characteristics. Expression arrays for monitoring total gene expression based on mRNA can provide quantitative insight into which gene or genes are on or off; but this information is insufficient to fully predict dynamic biological phenomena. Using nonlinear stability analysis we show that a combination of gene expression information at the message level and at the protein level is required to describe even simple models of gene networks. To help illustrate the need for such information we consider a mechanistic model for circadian rhythmicity which shows agreement with experimental observations when protein and mRNA information are included and we propose a framework for acquiring and analyzing experimental and mathematically derived information about gene networks.  相似文献   

13.
14.
15.
16.
17.
Masting is the intermittent and synchronized production of a large amount of flower and seed in plant populations. This population-level phenomenon is caused by individual-level variability in reproduction and its synchrony between individuals. The variability at the individual level is induced by synchronized reproduction between branches within an individual because a tree is an assemblage of branches that are considered as semiautonomous units. However, there have been no empirical studies that quantify the degree of reproductive synchrony at the branch level within the same tree in masting species. Here, we evaluated the reproductive synchrony within individuals by monitoring flowering dynamics and expression level of a flowering-time gene at the branch-level in a typical masting species, Fagus crenata Blume. The 4-year census showed that the branch-level gene expression was highly variable between years and was strongly synchronized between branches. The branch-level synchrony in flowering-time gene expression was followed by coherent flowering cycle at the whole individual. To examine the causal relationship between gene expression and climatic factors, we performed a nonlinear statistical analysis called convergent cross-mapping using the time course data of gene expression and environmental variables. Our results indicated that the observed gene expression pattern was well cross-mapped by temperature or precipitation. However, this cross-mapping skill was lower than that of randomly generated seasonal dynamics, implying a combination of internal and external environmental signals is more likely to regulate gene expression dynamics in F. crenata. Our results provide the first empirical evidence that synchronized expression of a flowering-time gene between branches underlies integrated flowering behavior at the individual level.  相似文献   

18.
19.
Selection on phenotypes may cause genetic change. To understand the relationship between phenotype and gene expression from an evolutionary viewpoint, it is important to study the concordance between gene expression and profiles of phenotypes. In this study, we use a novel method of clustering to identify genes whose expression profiles are related to a quantitative phenotype. Cluster analysis of gene expression data aims at classifying genes into several different groups based on the similarity of their expression profiles across multiple conditions. The hope is that genes that are classified into the same clusters may share underlying regulatory elements or may be a part of the same metabolic pathways. Current methods for examining the association between phenotype and gene expression are limited to linear association measured by the correlation between individual gene expression values and phenotype. Genes may be associated with the phenotype in a nonlinear fashion. In addition, groups of genes that share a particular pattern in their relationship to phenotype may be of evolutionary interest. In this study, we develop a method to group genes based on orthogonal polynomials under a multivariate Gaussian mixture model. The effect of each expressed gene on the phenotype is partitioned into a cluster mean and a random deviation from the mean. Genes can also be clustered based on a time series. Parameters are estimated using the expectation-maximization algorithm and implemented in SAS. The method is verified with simulated data and demonstrated with experimental data from 2 studies, one clusters with respect to severity of disease in Alzheimer's patients and another clusters data for a rat fracture healing study over time. We find significant evidence of nonlinear associations in both studies and successfully describe these patterns with our method. We give detailed instructions and provide a working program that allows others to directly implement this method in their own analyses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号