首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyponatremia is a highly morbid condition, present in a wide range of human pathologies, that exposes patients to encephalopathic complication and the risk of permanent brain damage and death. Treating hyponatremia has proved to be difficult and still awaits safe management, avoiding the morbid sequelae of demyelinizing and necrotic lesions associated with the use of hypertonic solutions. During acute and chronic hyponatremia in vivo, the brain extrudes the excessive water by decreasing its content of electrolytes and organic osmolytes. At the cellular level, a similar response occurs upon cell swelling. Among the organic osmolytes involved in both responses, free amino acids play a prominent role because of the large intracellular pools often found in nerve cells. An overview of the changes in brain amino acid content during hyponatremia in vivo is presented and the contribution of these changes to the adaptive cell responses involved in volume regulation discussed. Additionally, new data are provided concerning changes in amino acid levels in different regions of the central nervous system after chronic hyponatremia. Results favor the role of taurine, glutamine, glutamate, and aspartate as the main amino acid osmolytes involved in the brain adaptive response to hyponatremia in vivo. Deeper knowledge of the adaptive overall and cellular brain mechanisms activated during hyponatremia would lead to the design of safer therapies for the hyponatremic patient.  相似文献   

2.
In our previous work, we found that perfusion of the rat cerebral cortex with hypo-osmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R. E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels, whereas mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypo-osmotic medium to reverse reductions in osmolarity, changes in microdialysate levels of glutamine were prevented, indicating an involvement of cellular swelling. As the main source of brain glutamine is astrocytic synthesis and export, we explored the impact of hypo-osmotic medium on glutamine synthesis and transport in rat primary astrocyte cultures. In astrocytes, a 40% reduction in medium osmolarity moderately stimulated the release of L-[(3) H]glutamine by ~twofold and produced no changes in L-[(3) H]glutamine uptake. In comparison, hypo-osmotic medium stimulated the release of glutamate (traced with D-[(3) H]aspartate) by more than 20-fold. In whole-cell enzymatic assays, we discovered that hypo-osmotic medium caused a 20% inhibition of astrocytic conversion of L-[(3) H]glutamate into L-[(3) H]glutamine by glutamine synthetase. Using an HPLC assay, we further found a 35% reduction in intracellular levels of endogenous glutamine. Overall, our findings suggest that cellular swelling (i) inhibits astrocytic glutamine synthetase activity, and (ii) reduces substrate availability for this enzyme because of the activation of volume-regulated anion channels. These combined effects likely lead to reductions in astrocytic glutamine export in vivo and may partially explain occurrence of hyperexcitability and seizures in human hyponatremia.  相似文献   

3.
A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC) are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl]) medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i) kinetic properties, (ii) sensitivity to isoosmotic changes in [NaCl], and (iii) sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.  相似文献   

4.
Primary rat cerebral astrocyte cultures were grown for 2 weeks in isoosmotic medium (305 mosmol) and then placed in similar medium with a reduced NaCl concentration. During the first hour of growth in this moderately hypoosmotic medium (240 mosmol), the cells lose 88% of their taurine contents, 62% of their alanine contents, and 54% of their aspartate contents while regaining normal volume. Loss of these amino acids accounts for 43% of observed volume regulation. Contents of these amino acids remain decreased during 24 h of growth in hypoosmotic medium. In contrast, potassium, glutamate, glutamine, and asparagine contents are not changed, relative to cells in isoosmotic medium, at time points between 1 h and 24 h of hypoosmotic exposure. The data suggest astrocytes contribute to net loss of amino acids, but not potassium, from brains exposed to hypoosmotic conditions in situ.  相似文献   

5.
The aims of this study were twofold: (i) to determine quantitatively the contribution of glutamate/glutamine cycling to total astrocyte/neuron substrate trafficking for the replenishment of neurotransmitter glutamate; and (ii) to determine the relative contributions of anaplerotic flux and glutamate/glutamine cycling to total glutamine synthesis. In this work in vivo and in vitro (13)C NMR spectroscopy were used, with a [2-(13)C]glucose or [5-(13)C]glucose infusion, to determine the rates of glutamate/glutamine cycling, de novo glutamine synthesis via anaplerosis, and the neuronal and astrocytic tricarboxylic acid cycles in the rat cerebral cortex. The rate of glutamate/glutamine cycling measured in this study is compared with that determined from re-analysis of (13)C NMR data acquired during a [1-(13)C]glucose infusion. The excellent agreement between these rates supports the hypothesis that glutamate/glutamine cycling is a major metabolic flux ( approximately 0.20 micromol/min/g) in the cerebral cortex of anesthetized rats and the predominant pathway of astrocyte/neuron trafficking of neurotransmitter glutamate precursors. Under normoammonemic conditions anaplerosis was found to comprise 19-26% of the total glutamine synthesis, whilst this fraction increased significantly during hyperammonemia ( approximately 32%). These findings indicate that anaplerotic glutamine synthesis is coupled to nitrogen removal from the brain (ammonia detoxification) under hyperammonemic conditions.  相似文献   

6.
Diffusion-weighted in vivo1H-NMR spectroscopy of F98 glioma cells embedded in basement membrane gel threads showed that the initial cell swelling to about 180% of the original volume induced under hypotonic stress was followed by a regulatory volume decrease to nearly 100% of the control volume in Dulbecco's modified Eagle's medium (DMEM) but only to 130% in Krebs-Henseleit buffer (KHB, containing only glucose as a substrate) after 7 h. The initial cell shrinkage to approx. 70% induced by the hypertonic stress was compensated by a regulatory volume increase which after 7 h reached almost 100% of the control value in KHB and 75% in DMEM.1H-,13C-and31P-NMR spectroscopy of perchloric acid extracts showed that these volume regulatory processes were accompanied by pronounced changes in the content of organic osmolytes. Adaptation of intra- to extracellular osmolarity was preferentially mediated by a decrease in the cytosolic taurine level under hypotonic stress and by an intracellular accumulation of amino acids under hypertonic stress. If these solutes were not available in sufficient quantities (as in KHB), the osmolarity of the cytosol was increasingly modified by biosynthesis of products and intermediates of essential metabolic pathways, such as alanine, glutamate and glycerophosphocholine in addition to ethanolamine. The cellular nucleoside triphosphate level measured by in vivo31P-NMR spectroscopy indicated that the energy state of the cells was more easily sustained under hypotonic than hypertonic conditions.To whom to address reprint requests.  相似文献   

7.
It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5 h with [U-13C]glucose to monitor de novo synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH4Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis of alanine increased leading to an elevated content intra- as well as extracellularly of this amino acid. Treatment with MSO led to a dramatic decrease in glutamine content and increased the intracellular contents of glutamate and aspartate. The large increase in alanine during exposure to MSO underlines the importance of the GDH and ALAT biosynthetic pathway for ammonia fixation, and it points to the use of a GS inhibitor to ameliorate the brain toxicity and edema induced by hyperammonemia, events likely related to glutamine synthesis.  相似文献   

8.
Summary Effects of arginine deficiency and hyperammonemia on the brain concentrations of amino acids and urea cycle enzyme activities in young and adult ferrets were investigated. Only young ferrets developed hyperammonemia and encephalopathy immediately after consuming the arginine-free diet. Brain ornithine and citrulline concentrations in young ferrets fed arginine containing diet were significantly lower than those in adult ferrets. Compared to rats and other animals, young and adult ferrets had lower concentrations of brain glutamic acid and glutamine. Unlike in other species, brain glutamine was not elevated in young, hyperammonemic ferrets. Brain arginase and glutamate dehydrogenase activities were significantly increased in young ferrets fed arginine-free diet. Young ferrets provide a useful animal model for investigating the neurotoxicity of acute hyperammonemia.Abbreviations ACD Arginine-containing diet - AFD Arginine-free diet This work was presented, in part, at the annual meeting of the Midwest Society for Pediatric Research, Chicago, IL, 1991.  相似文献   

9.
Sparse-fur mice which are deficient in ornithine transcarbamylase, the second-step enzyme in the urea cycle, were examined for hyperammonemia and its relationship with encephalopathy. We compared amino acid concentrations in the serum and brain of spf mice with those of control mice. Unlike hepatic encephalopathy we could not find marked amino acid changes in the serum of spf mice besides low levels of citrulline and arginine. But in the brain of spf mice, glutamine was increased strikingly during hyperammonemia, and a concomitant accumulation of large neutral amino acids such as tyrosine, phenylalanine, methionine, and histidine was observed. The accumulation of these large neutral amino acids in the brain was not influenced by 24-hr fasting which caused increases in branched chain amino acids in the serum. From these results, we conclude that the accumulation of the large neutral amino acid in the brain of hyperammonemic state is caused by uptake of ammonia in the brain and the subsequent accumulation of glutamine, but is not influenced by a decreased ratio of branched chain amino acids to aromatic amino acids in the serum.  相似文献   

10.
Urea cycle disorders, hyperammonemia and neurotransmitter changes   总被引:1,自引:0,他引:1  
J P Colombo 《Enzyme》1987,38(1-4):214-219
In congenital urea cycle disorders, detoxification of ammonia is impaired, leading to hyperammonemia. Ammonia is the major component causing the acute neurological disturbances. It may influence the supply of substrate and its transport at the blood-brain barrier (BBB) which results in alterations in the synthesis and catabolism of neurotransmitters in the brain. In hyperammonemic rats, the uptake of tryptophan into the brain is increased with an augmented flux through the serotonin pathway. In the forebrain, glutamine as well as amino acids transported with the same L-carrier system, such as phenylalanine, tyrosine and tryptophan, are elevated. It is postulated that the increased transport of tryptophan at the BBB occurs in exchange with glutamine. Methionine sulfoximine (MSO) inhibits glutamine synthetase in the cerebral cortex. The activity drops from 5.85 +/- 0.38 to 1.07 +/- 0.37 mumol/min/g wet weight. Under MSO, the brain tryptophan uptake also decreased to 64.2 +/- 4.5% in hyperammonemic rats, to 54.1 +/- 8.0% in untreated hyperammonemic rats, whereas without MSO an increase of tryptophan uptake was observed. An effect of glutamine on tryptophan transport could also be demonstrated using brain microvessel preparations as a model for the BBB. Our findings indicate that preloading isolated microvessels with L-glutamine increases tryptophan uptake into the endothelia when L-glutamine is at concentrations found in brain homogenates under hyperammonemia. Since brain microvessels do not contain glutamine synthetase activity, enzymes from the gamma-glutamyl cycle may be involved in the glutamine-mediated tryptophan transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In the post-absorptive state, ammonia is produced in equal amounts in the small and large bowel. Small intestinal synthesis of ammonia is related to amino acid breakdown, whereas large bowel ammonia production is caused by bacterial breakdown of amino acids and urea. The contribution of the gut to the hyperammonemic state observed during liver failure is mainly due to portacaval shunting and not the result of changes in the metabolism of ammonia in the gut. Patients with liver disease have reduced urea synthesis capacity and reduced peri-venous glutamine synthesis capacity, resulting in reduced capacity to detoxify ammonia in the liver.The kidneys produce ammonia but adapt to liver failure in experimental portacaval shunting by reducing ammonia release into the systemic circulation. The kidneys have the ability to switch from net ammonia production to net ammonia excretion, which is beneficial for the hyperammonemic patient. Data in experimental animals suggest that the kidneys could have a major role in post-feeding and post-haemorrhagic hyperammonemia.During hyperammonemia, muscle takes up ammonia and plays a major role in (temporarily) detoxifying ammonia to glutamine. Net uptake of ammonia by the brain occurs in patients and experimental animals with acute and chronic liver failure. Concomitant release of glutamine has been demonstrated in experimental animals, together with large increases of the cerebral cortex ammonia and glutamine concentrations. In this review we will discuss interorgan trafficking of ammonia during acute and chronic liver failure. Interorgan glutamine metabolism is also briefly discussed, since glutamine synthesis from glutamate and ammonia is an important alternative pathway of ammonia detoxification. The main ammonia producing organs are the intestines and the kidneys, whereas the major ammonia consuming organs are the liver and the muscle.  相似文献   

12.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

13.
Early preimplantation mouse embryos are susceptible to the detrimental effects of increased osmolarity and, paradoxically, their in vitro development is significantly compromised by osmolarities near that of oviductal fluid. In vitro development can be restored, however, by several compounds that are accumulated by 1-cell embryos to act as organic osmolytes, providing intracellular osmotic support and cell volume regulation. Taurine, a substrate of the beta-amino acid transporter that functions as an organic osmolyte transporter in other cells, had been proposed to function as an organic osmolyte in mouse embryos. Here, however, we found that taurine is neither able to provide protection for in vitro embryo development against increased osmolarity nor is it accumulated to higher intracellular levels as osmolarity is increased, indicating that it cannot function as an organic osmolyte in early preimplantation embryos. In contrast, beta-alanine, the other major substrate of the beta-amino acid transporter, both protects against increased osmolarity and is accumulated to somewhat higher levels as osmolarity is increased, indicating that it is able to function as an organic osmolyte in embryos. However, we also found that beta-alanine is displaced from embryos by glycine-the most effective organic osmolyte in embryos previously identified-and beta-alanine does not increase protection above that afforded by glycine at concentrations near those in vivo. Thus, the beta-amino acid transporter is likely present in early preimplantation embryos to supply beta-amino acids such as taurine for purposes other than to serve as organic osmolytes.  相似文献   

14.
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.  相似文献   

15.
The transport of glutamine and alanine into rat colonocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
The transport of glutamine and alanine into isolated rat colonocytes was studied. The transport of both amino acids appears to be dependent on a Na+ gradient. The apparent Km values for the transport of glutamine and alanine were 2.56 +/- 0.84 and 5.35 +/- 1.20 mM respectively, but with similar Vmax. values. Glutamine and alanine transport were mutually competitive, and the transport of both amino acids was competitively inhibited by 2-methylaminoisobutyrate. In contrast, histidine inhibited the transport of both glutamine and alanine non-competitively. It is concluded that glutamine and alanine are transported into rat colonocytes by a common carrier system similar to System A of other cells. It is suggested that the metabolic function of this transport system in rat colonocytes might be the partial exchange of extracellular glutamine for intracellular alanine.  相似文献   

16.
The activity of the blood-brain neutral amino acid transport system is increased in rats infused with ammonium salts or rendered hyperammonemic by a portacaval anastomosis. This effect may be due to a direct action of ammonia or to some metabolic consequence of high ammonia levels, such as increased brain glutamine synthesis. To test these possibilities we evaluated the kinetic parameters of blood-brain transport of leucine and phenylalanine in control rats, in rats after continuous 24 h infusion of ammonium salts (NH4+ = 2.5 mmol X kg-1 X h-1), and in rats treated with methionine sulfoximine, an inhibitor of glutamine synthetase, before infusion of ammonium salts. In ammonia-infused rats without methionine sulfoximine treatment, the KD and Vmax of phenylalanine transport were increased, respectively, about 170% and 80% compared to controls, whereas the Km and Vmax of leucine transport were increased, respectively, about 100% and 200%. Electron microscopy demonstrated marked swelling of astrocytic processes around brain capillaries of ammonia-infused rats; however, capillary permeability to horseradish peroxidase apparently was not increased by ammonia infusion. Administration of methionine sulfoximine before ammonia infusion inhibited glutamine synthesis and prevented the changes in transport of leucine and phenylalanine, but apparently did not reverse the perivascular swelling. These results suggest that the ammonia-induced increase in the activity of transport of large neutral amino acids across the blood-brain barrier requires glutamine synthesis in brain, and is not a direct effect of ammonia.  相似文献   

17.
Erwinia chrysanthemi is a phytopathogenic soil enterobacterium closely related to Escherichia coli. Both species respond to hyperosmotic pressure and to external added osmoprotectants in a similar way. Unexpectedly, the pools of endogenous osmolytes show different compositions. Instead of the commonly accumulated glutamate and trehalose, E. chrysanthemi strain 3937 promotes the accumulation of glutamine and alpha-glucosylglycerate, which is a new osmolyte for enterobacteria, together with glutamine. The amounts of the three osmolytes increased with medium osmolarity and were reduced when betaine was provided in the growth medium. Both glutamine and glutamate showed a high rate of turnover, whereas glucosylglycerate stayed stable. In addition, the balance between the osmolytes depended on the osmolality of the medium. Glucosylglycerate and glutamate were the major intracellular compounds in low salt concentrations, whereas glutamine predominated at higher concentrations. Interestingly, the ammonium content of the medium also influenced the pool of osmolytes. During bacterial growth with 1 mM ammonium in stressing conditions, more glucosylglycerate accumulated by far than the other organic solutes. Glucosylglycerate synthesis has been described in some halophilic archaea and bacteria but not as a dominant osmolyte, and its role as an osmolyte in Erwinia chrysanthemi 3937 shows that nonhalophilic bacteria can also use ionic osmolytes.  相似文献   

18.
Hepatic proteolysis is inhibited by insulin, amino acids and hypoosmotic cell swelling and is stimulated by glucagon. These effectors simultaneously modulate cell volume in the intact liver, as shown by measurements of the intracellular water space. A close relationship exists between the effect on proteolysis and the accompanying cell volume change, regardless of whether hepatic proteolysis was modified by insulin, glucagon, cyclic AMP, glutamine, glycine, barium of hypoosmotic exposure. It is suggested that cell volume changes exerted by hormones and amino acids play a crucial role in the regulation of hepatic proteolysis.  相似文献   

19.
Glutamine synthetase in brain: effect of ammonia   总被引:16,自引:0,他引:16  
Glutamine synthetase (GS) in brain is located mainly in astrocytes. One of the primary roles of astrocytes is to protect neurons against excitotoxicity by taking up excess ammonia and glutamate and converting it into glutamine via the enzyme GS. Changes in GS expression may reflect changes in astroglial function, which can affect neuronal functions.Hyperammonemia is an important factor responsible of hepatic encephalopathy (HE) and causes astroglial swelling. Hyperammonemia can be experimentally induced and an adaptive astroglial response to high levels of ammonia and glutamate seems to occur in long-term studies. In hyperammonemic states, astroglial cells can experience morphological changes that may alter different astrocyte functions, such as protein synthesis or neurotransmitters uptake. One of the observed changes is the increase in the GS expression in astrocytes located in glutamatergic areas. The induction of GS expression in these specific areas would balance the increased ammonia and glutamate uptake and protect against neuronal degeneration, whereas, decrease of GS expression in non-glutamatergic areas could disrupt the neuron-glial metabolic interactions as a consequence of hyperammonemia.Induction of GS has been described in astrocytes in response to the action of glutamate on active glutamate receptors. The over-stimulation of glutamate receptors may also favour nitric oxide (NO) formation by activation of NO synthase (NOS), and NO has been implicated in the pathogenesis of several CNS diseases. Hyperammonemia could induce the formation of inducible NOS in astroglial cells, with the consequent NO formation, deactivation of GS and dawn-regulation of glutamate uptake. However, in glutamatergic areas, the distribution of both glial glutamate receptors and glial glutamate transporters parallels the GS location, suggesting a functional coupling between glutamate uptake and degradation by glutamate transporters and GS to attenuate brain injury in these areas.In hyperammonemia, the astroglial cells located in proximity to blood-vessels in glutamatergic areas show increased GS protein content in their perivascular processes. Since ammonia freely crosses the blood-brain barrier (BBB) and astrocytes are responsible for maintaining the BBB, the presence of GS in the perivascular processes could produce a rapid glutamine synthesis to be released into blood. It could, therefore, prevent the entry of high amounts of ammonia from circulation to attenuate neurotoxicity. The changes in the distribution of this critical enzyme suggests that the glutamate-glutamine cycle may be differentially impaired in hyperammonemic states.  相似文献   

20.
End products of glucose and glutamine metabolism by L929 cells   总被引:2,自引:0,他引:2  
Products of glucose and glutamine metabolism by L929 cells were detected and quantitated by gas chromatography and mass spectrometry of the oxime-trimethylsilyl derivatives. This method allowed detection and identification of all major carboxylic and amino acids produced in the system. Although lactic acid was expected to be the major product, alanine, citric, glutamic, aspartic, and pyruvic acids were also released into the culture medium at significant rates. Incorporation of labeled carbon from D-[U-13C]glucose showed that the alanine, lactic, and pyruvic acids were derived from glucose as was one-third of the citric acid carbon. The rate of glucose utilization for production of these end products was 29-fold greater than the rate of glucose oxidation to CO2, and calculated ATP production from alanine and pyruvate synthesis exceeded that from lactate synthesis by nearly 2-fold. Utilization of glutamine for synthesis of aspartic, glutamic, and citric acids also exceeded the rate of glutamine oxidation, thereby making end-product synthesis from glucose and glutamine the dominant cellular metabolic activity. In the absence of glucose, synthesis and intracellular levels of aspartic and glutamic acids increased, whereas synthesis and cell content of the other acids decreased markedly. This response is consistent with the metabolic pattern proposed by Moreadith and Lehninger (Moreadith, R.W., and Lehninger, A.L. (1984) J. Biol. Chem. 259, 6215-6221) in which much of the glutamine used by these cells is converted to aspartate in the absence of a pyruvate source and to aspartate or citrate in the presence of pyruvate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号