首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An indirect labelled-second-antibody cellular immunoassay for adipocyte surface lipoprotein lipase was used to assess the changes that occurred during the incubation of cells in the presence and absence of effectors. In the absence of any specific effectors, the amount of immunodetectable lipoprotein lipase present at the surface of adipocytes remained constant throughout the 4 h incubation period at 37 degrees C. Under such conditions total cellular enzyme activity also remained constant, with no activity appearing in the medium. In the presence of heparin, cell-surface immunodetectable lipoprotein lipase increased by up to 20%, whereas in the presence of cycloheximide they decreased by up to 60%. Thus the obvious turnover of enzyme from this cell-surface site was found to be relatively rapid and dependent for its replenishment, at least in part, on protein synthesis. In the presence of insulin alone, a substantial increase in cell-surface lipoprotein lipase protein occurred, only part of which was dependent on protein synthesis. The total cellular activity of lipoprotein lipase was unaffected by the presence of insulin. The insulin-dependent increase in cell-surface enzyme was potentiated somewhat in the presence of dexamethasone, which was not shown to exert any independent effect. Glucagon, adrenaline and theophylline all produced a significant decline in the cell-surface immunodetectable lipoprotein lipase, which in the case examined (adrenaline) was partially additive with regard to the independent effect of cycloheximide. Cell-surface immunodetectable lipoprotein lipase amounts were decreased significantly when cells were incubated in the presence of either colchicine or tunicamycin. The concerted way in which cell-surface lipoprotein lipase altered during the incubations of adipocytes in the presence of effectors suggested that the translocation of enzyme to and from this cellular site was dependent on hormonal action and the integrity of intracellular protein-transport mechanisms.  相似文献   

2.
1. Subcellular fractions, characterized by using morphological, compositional and enzymic markers, were prepared from rat heart tissue and cells isolated from the hearts of fed and 24 h-starved rats. 2. The lipoprotein lipase activity of fractions from whole tissue and isolated cells was determined in either fresh fractions or in acetone/diethyl ether powders of the fractions. 3. Lipoprotein lipase activity was present in all the fractions from tissue and cells, but was found to be of highest relative specific activity in the microsomal () fractions. 4. In fractions prepared from the isolated cells of hearts from starved rats the proportion of the total lipoprotein lipase present and its relative specific activity in the microsomal fraction were greater than in the equivalent fractions from fed animals. 5. The enhancement of lipoprotein lipase activity as a result of the acetone/diethyl ether powder preparation of fractions was most extensive in the microsomal fractions. 6. Investigation of the microsomal fraction showed that the lipoprotein lipase activity present was in two pools, one of which was within endoplasmic-reticulum vesicles. 7. The observations were consistent with the possibility that the cardiac-muscle cell could be the origin of the lipoprotein lipase activity functional in triacylglycerol uptake by the heart.  相似文献   

3.
Lipoprotein lipase activity was higher in fat-pad pieces than in isolated adipocytes from the same fed rats, whereas hydrolysis of triacylglycerols from triacylglycerol-rich lipoproteins was similar in the two preparations when incubated either in basal conditions or in the presence of heparin. In both preparations there was a similar release of lipoprotein lipase activity into the medium during basal incubation, enhanced by the presence of heparin. In fat-pad pieces, but not in isolated adipocytes, incubation with heparin produced a decrease in the lipoprotein lipase activity measured in the tissue preparation. In fat-pad pieces from 24 h-starved rats, lipoprotein lipase activity was the same as in isolated adipocytes from the same animals and incubation with heparin did not affect the appearance of lipoprotein lipase in the medium or the utilization of triacylglycerols from triacylglycerol-rich lipoproteins. These results support the following conclusions. (1) The effectiveness of lipoprotein lipase in adipose tissue preparations in vitro depends more on its availability to the substrate than on its total activity. (2) Heparin acts on adipose tissue preparations from fed animals both by enhancing the release of pre-existing extracellular enzyme (which is absent in isolated adipocytes) and by enhancing the transfer outside the cells of the intracellular (and mainly undetectable) enzyme that is activated in the secretion process. (3) In adipose tissue from starved animals there is not only a decrease in the active extracellular form of lipoprotein lipase activity but also a reduction in the intracellular (and mainly undetectable) pool of the enzyme.  相似文献   

4.
Lipoprotein lipase activity in neonatal-rat liver cell types.   总被引:5,自引:0,他引:5  
The lipoprotein lipase activity in the liver of neonatal (1 day old) rats was about 3 times that in the liver of adult rats. Perfusion of the neonatal liver with collagenase decreased the tissue-associated activity by 77%. When neonatal-rat liver cells were dispersed, hepatocyte-enriched (fraction I) and haemopoietic-cell-enriched (fraction II) populations were obtained. The lipoprotein lipase activity in fraction I was 7 times that in fraction II. On the basis of those activities and the proportion of both cell types in either fraction, it was estimated that hepatocytes contained most, if not all, the lipoprotein lipase activity detected in collagenase-perfused neonatal-rat livers. From those calculations it was also concluded that haemopoietic cells did not contain lipoprotein lipase activity. When the hepatocyte-enriched cell population was incubated at 25 degrees C for up to 3 h, a slow but progressive release of enzyme activity to the incubation medium was found. However, the total activity (cells + medium) did not significantly change through the incubation period. Cycloheximide produced a time-dependent decrease in the cell-associated activity. Heparin increased the amount of lipoprotein lipase activity released to the medium. Because the cell-associated activity was unchanged, heparin also produced a time-dependent increase in the total activity. In those cells incubated with heparin, cycloheximide did not affect the initial release of lipoprotein lipase activity to the medium, but blocked further release. The cell-associated activity was also decreased by the presence of cycloheximide in those cells. It is concluded that neonatal-rat hepatocytes synthesize active lipoprotein lipase.  相似文献   

5.
1. Lipoprotein lipase activity was measured in heart homogenates and in heparin-releasable and non-releasable fractions of isolated perfused rat hearts, after the intravenous injection of Triton WR-1339. 2. In homogenates of hearts from starved, rats, lipoprotein lipase activity was significantly inhibited (P less than 0.001) 2h after the injection of Triton. This inhibition was restricted exclusively to the heparin-releasable fraction. Maximum inhibition occurred 30 min after the injection and corresponded to about 60% of the lipoprotein lipase activity that could be released from the heart during 30 s perfusion with heparin. 3. Hearts of Triton-treated starved rats were unable to take up and utilize 14C-labelled chylomicron triacylglycerol fatty acids, even though about 40% of heparin-releasable activity remained in the hearts. 4. It is concluded that Triton selectively inhibits the functional lipoprotein lipase, i.e. the enzyme directly involved in the hydrolysis of circulating plasma triacylglycerols. 5. Lipoprotein lipase activities measured in homogenates of soleus muscle of starved rats and adipose tissue of fed rats were decreased by 25 and 39% respectively after Triton injection. It is concluded that, by analogy with the heart, these Triton-inhibitable activities correspond to the functional lipoprotein lipase.  相似文献   

6.
Summary Heparin (5 U/ml) induced the release of LPL into the incubation medium of cardiac myocytes isolated from adult rat hearts. The secretion of LPL occurred in two phases: a rapid release (5–10 min of incubation with heparin) that was independent of protein synthesis followed by a slower rate of release that was inhibited by cycloheximide. The rapid release of LPL induced by heparin likely occurs from sites that are at or near the cell surface. LPL secretion could also be stimulated by heparan sulfate and dermatan sulfate, but not by hyaluronic acid, chondroitin sulfate or keratan sulfate. Heparin-releasable LPL activity measured in short-term incubations represented a large fraction (40–50%) of the initial LPL activity associated with myocytes, but the fall in cellular LPL activity following heparin was less than the amount of LPL activity secreted into the incubation medium. This discrepancy was not due to latency of LPL in the pre-heparin cell homogenates, but in part could be due to a three-fold greater affinity of the heparin-released enzyme for substrate as compared to LPL in post-heparin myocyte homogenates.Abbreviations LPL lipoprotein lipase  相似文献   

7.
The mechanism of heparin stimulation of rat adipocyte lipoprotein lipase   总被引:2,自引:0,他引:2  
Free fat cells and stromal-vascular cells were prepared from rat adipose tissue by incubation with collagenase. NH(4)OH-NH(4)Cl extracts of acetone-ether powders prepared from fat cells contained lipoprotein lipase activity but extracts of stromal-vascular cells did not. Intact fat cells released lipoprotein lipase activity into incubation medium, but intact stromal-vascular cells did not. The lipoprotein lipase activity of the medium was increased when fat cells were incubated with heparin, and this was accompanied by a corresponding decrease in the activity of subsequently prepared fat cell extracts. Heparin did not release lipoprotein lipase activity from stromal-vascular cells. The lipoprotein lipase activity of NH(4)OH-NH(4)Cl extracts of fat cell acetone powders is increased by the presence of heparin during the assay. This increase is not due to preservation of enzyme activity, but to increased binding of lipoprotein lipase to chylomicrons. Protamine sulfate and sodium chloride have little effect on the binding of lipoprotein lipase to chylomicrons, but they inhibit enzyme activity after binding to substrate has occurred. These inhibitors do, however, inhibit the stimulatory effect of heparin on enzyme-substrate binding.  相似文献   

8.
1. Liver contains a lipase which catalyzes in vitro the hydrolysis of esters of short-chain normal primary alcohols and fatty acids. It is shown that this enzymatic activity can be measured by using intact liver cells as source of enzyme. During short-term incubations of suspensions of cells isolated from rat liver, the lipase acts as a membrane-bound enzyme and readily attacks [3H] oleoylethanol added as an emulsion into the bathing medium. The lipolytic reaction proceeds linearly for at least 20 min at 37 degrees C, at the pH optimum of 8.5. [3H] Oleic acid, a reaction product, is mostly retained in the medium and is used to monitor the lipolytic process. 2. In the presence of heparin, the bound lipase is released in the medium in amounts representing one-third to one half the total activity contained in the cells. This release is very rapid and associated in all cases with a concomitant release of lactate dehydrogenase activity. Such effects are consistent with the interpretation that heparin, at concentrations comprised between 10 and 100 mug per ml, causes alterations of the plasma membrane of the isolated cells, resulting in the dispersion of membrane-bound and cytoplasmtic material. This action of heparin is totally blocked by protamine sulfate (1 mg/ml). No specific effect of heparin directed towards the selective release of lipase could be demonstrated under these conditions. 3. During incubations in the presence of heparin, it was observed that the release of monoester lipase was quantitatively related to a simultaneous decrease in membrane-bound as well as in total monoester lipase activity measureable in the cells after homogenization. This, along with the reappearance of membrane-bound activity immediately after heparin withdrawal, suggest that under the experimental conditions, the membrane-bound enzyme is replaced from inside the cell in proportion of its release by heparin.  相似文献   

9.
Total plasma postheparin lipolytic activity as well as lipoprotein lipase activity in plasma was higher after heparin injection in thyroidectomized rats than in controls. In contrast, the activity of liver lipase was lower in thyroidectomized rats. Adipose tissue from thyroidectomized rats contained more lipoprotein lipase activity than adipose tissue from controls as measured both in extracts of tissue homogenates and medium from in vitro incubations of tissue pieces. There were no differences between control and hypothyroid rats in the disappearance of intravenously injected 125I-labeled lipoprotein lipase, but when a low dose of heparin was injected before the labeled enzyme, the disappearance of 125I-labeled lipoprotein lipase was more retarded in thyroidectomized rats. The elimination of heparin itself was slightly retarded by thyroidectomy.  相似文献   

10.
Lipoprotein lipase activity was studied in rat heart cell cultures grown in the presence of 20% fetal calf and horse serum and a medium concentration of triacylglycerol of 0.03 mg/ml. After 6--8 days, when the enzyme activity had reached high levels, the cells were incubated for 24 h in a medium containing 20% serum derived from fasted or fed rats. No change in enzyme activity occurred in the presence of fasted rat serum, but a 50% fall was observed with fed rat serium. When the complete culture medium was supplemented with rat plasma VLDL (0.075--0.75 mg triacylglycerol) a pronounced decrease in lipoprotein lipase activity occurred after 3--5 h of incubation. Similar extent of enzyme fall was observed also in the presence of triacylglycerol-rich lipoproteins isolated from rat plasma after feeding of safflower oil or lard, even though the fatty acid composition of the triacylgylcerol varied markedly. As the addition of VLDL to the culture medium resulted in a lesser fall of heparin releasable than residual activity it seems that there was no direct inhibition of surface bound enzyme activity and that the transport of the enzyme to the cell surface was not affected. These data indicate that addition of VLDL to the culture medium resulted in a fall in enzyme synthesis, while total protein synthesis as determined by incorporation of [3H]leucine, remained unchanged. This inhibition could be reproduced by increasing free fatty acid concentration of the medium, however addition of excess albumin to VLDL-containing medium did not prevent the fall in enzyme activity. The present results obtained with cultured rat hearts cells suggest that in vivo plasma levels of triacylglycerol-rich lipoproteins could modulate the lipoproteins could modulate the lipoprotein lipase activity of the heart.  相似文献   

11.
A simple and specific method for assaying lipoprotein lipase activity is described. Postheparin plasma, heart homogenates, or extracts of acetone powder of adipose tissue were incubated with a triolein-coated Celite substrate, and enzyme activity was determined from the rate of free fatty acid (FFA) release in the incubation system. FFA release was linear for 30 min, and was proportional to protein concentration in the incubation system. FFA release was decreased by addition of deoxycholate or Triton X-100. Increasing the concentration of heparin in the incubation system caused a gradual decrease in FFA release by postheparin plasma and increases in activity of heart homogenates and adipose tissue lipoprotein lipase. The Celite substrate was found to be satisfactory for assaying pancreatic lipase activity as well.  相似文献   

12.
When cardiac muscle cells from mature rats were incubated in vitro in the presence of heparin (8.7 nmole ml-1) lipoprotein lipase activity appeared in the incubation medium. The intracellular activity of the enzyme remained unchanged. Other glycosaminoglycans (heparan sulphate, dermatan sulphate, keratan sulphate and chrondroitin 6-sulphate) at the same or higher concentrations were totally ineffective in producing any enzyme redistribution between cells and medium. The release seen in the presence of heparin was blocked by the presence of cycloheximide. Cycloheximide by contrast had no effect on the release observed in the presence of dexamethasone, The action of endogenous glycosaminoglycans are unlikely therefore to have a significant role to play in the movement of lipoprotein lipase in heart tissue in vivo.  相似文献   

13.
The clearing-factor lipase activity of isolated fat-cells.   总被引:6,自引:6,他引:0       下载免费PDF全文
1. When fat-cells are isolated from the epididymal adipose tissue of 24h-starved rats and incubated at 25 degrees C in the presence of dialysed serum, glucose, insulin, amino acids and heparin, the total clearing-factor lipase acitivity of the incubation system increases progressively over a period of several hours. 2. All of the increase in activity is accounted for by the appearance of enzyme in the appearance of enzyme in the incubation medium and the fat-cell activity does not change significantly. Cycloheximids, at a concentration that prevents protein synthesis, does not affect the appearance of enzyme in the incubation medium, but the fat-cell enzyme activity is decreased in its presence. 3. The magnitude of the increase in total clearing factor lipase activity is unaffected by the omission of heparin from the medium. However, less enzyme is extracted in tis absence and the fat-cell activity increases. Cycloheximide again only affects the rise in cell activity and does not alter the activity in the incubation medium. 4. When serum in the incubation medium is replaced by casein, the distribution of enzyme between the cells and the medium is changed, but the magnitudes of the increases in total enzyme activity are similar. 5. These characteristics of the clearing-factor lipase response of isolated fat-cells differ in several respects from those observed earlier with intact adipose tissue from 24h-starved rats (Robinson & Wing, 1971; Cryer et al., 1973). The differences could be due, in part, to changes in the relative amounts of two different molecular forms of the enzyme that occur during the isolation of the fat-cells.  相似文献   

14.
Lipoprotein lipase activity is produced by the 3T3-L1 cell an established mouse fibroblast line which resembles an adipocyte after reaching a confluent stage of growth. Since insulin has been shown to be an important regulator of lipoprotein lipase in other mammalian systems, a two hour incubation period was utilized to determine if insulin could enhance an acute response of enzyme activity. Over the range of concentrations tested (0.4, 4.0 and 40 ng/ml), insulin increased lipoprotein lipase activity in acetone ether powders of cells (intracellular enzyme) and the activity secreted into the culture medium. A simultaneous decrease in lipoprotein lipase activity releasable with heparin in a subsequent incubation (membrane bound activity) indicates two distinct effects of insulin on the enzyme in this system.  相似文献   

15.
Lipoprotein lipase synthesized by cultured rat preadipocytes is present in three compartments: an intracellular, a surface-related 3-min heparin-releasable, and that secreted into the culture medium. 30 min after addition of 6 microM monensin, the lipoprotein lipase activity in the heparin-releasable compartment starts to decrease; by 4 h of monensin treatment the lipoprotein lipase activity in the heparin-releasable pool and in the culture medium is about 10% of that found in control dishes. The intracellular activity, which had been identified as lipoprotein lipase by an antiserum to lipoprotein lipase, increases slowly and doubles by 24 h. However, since the cellular compartment accounts for 10-25% of total activity, this increase does not account for the missing enzyme activity. To determine whether this enzyme molecule is synthesized but is not active, incorporation of labeled leucine, mannose and galactose into immunoadsorbable lipoprotein lipase was studied in control, monensin- or tunicamycin-treated cells. Addition of tunicamycin (5 micrograms/ml) for 24 h caused a 30-50% reduction in immunoadsorbable lipoprotein lipase, but the enzyme activity was reduced by 90%. On the other hand, 4 h monensin treatment reduced both incorporation of [3H]leucine into immunoadsorbable lipoprotein lipase and heparin-releasable and medium lipoprotein lipase activity by 57 to 77%. The immunoadsorbable lipoprotein lipase in the intracellular compartment has a [14C]mannose to [3H]galactose ratio of 0.15 and this ratio increased 6-fold in monensin-treated cells. The intracellular lipoprotein lipase in monensin-treated cells had the same affinity for both the native and synthetic substrate as the lipoprotein lipase in control cells, yet its spontaneous secretion into the culture medium and its release by 3 min heparin treatment was markedly decreased. The present results indicate that: the presence of asparagine-linked oligosaccharide (formation of which is inhibited by tunicamycin) is mandatory for the expression of lipoprotein lipase activity; lipoprotein lipase is active also in a high mannose form; and terminal glycosylation and oligosaccharide processing, which is inhibited by monensin, may be important for the appearance of heparin-releasable lipoprotein lipase and secretion of lipoprotein lipase into the medium.  相似文献   

16.
Rat hearts were perfused with heparin for 2 min at 4 degrees C. The lipoprotein lipase activity in the perfusate was inhibited by antiserum to rat adipose tissue lipoprotein lipase. By immunoblotting, the lipoprotein lipase derived from the functional pool of the heart was found to be a protein with an apparent Mr of 69 000. After incubation of the perfusate at 37 degrees C for 24 h an immunologically reactive protein with an apparent Mr of 28 000 was found. This protein is not a physiological derivative of the enzyme but a degradation product.  相似文献   

17.
Equilibrium-binding data of highly purified 125I-labeled avian lipoprotein lipase to cultured avian adipocytes demonstrate the presence of a class of high affinity binding sites. Analysis of the binding function yielded an association constant of 0.62 x 10(8)M-1 and a maximum binding capacity of 2.1 micrograms/60-mm dish. From a time course of dissociation of 125I-lipoprotein lipase from adipocytes at 4 degrees C, a dissociation rate constant of 6.1 x 10(-5)s-1 was obtained. Pretreatment of cells with heparinase and heparitinase resulted in a quantitative suppression of the high affinity binding component, establishing that lipoprotein lipase is bound to cell surface heparan sulfate proteoglycans. At 37 degrees C, cell surface-bound 125I-lipoprotein lipase is internalized and either degraded or recycled to the medium. The degradation rate constant for 125I-lipoprotein lipase was estimated to be 0.78 h-1. The degradation rate constant was reduced 6-fold when cells were exposed to 100 microM chloroquine, indicating that most of the degradation occurs within the lysosomal compartment. By using cells that had been pulsed with Trans35S-label for 1 h, it was demonstrated that acute treatment with endoglycosidases for up to 1 h resulted in a new lipoprotein lipase secretion rate which was 6-fold higher than that of control cells. Degradation of newly synthesized lipoprotein lipase was essentially blocked 30 min after the initiation of the chase. In other studies it was observed that there were no additive effects of chloroquine and either endoglycosidase or heparin treatment on total lipoprotein lipase levels (intracellular, cell surface, and medium) in adipocyte cultures. These experiments support the hypothesis that the release of lipoprotein lipase from its receptor prevents its internalization and degradation and enhances enzyme efflux from the adipocyte. A new model of lipoprotein lipase secretion in cultured adipocytes is proposed: Newly synthesized lipoprotein lipase is transported to the cell surface where it binds to specific heparan sulfate proteoglycan receptors. The enzyme is either released to the medium or internalized via the receptor, in which case the enzyme is degraded or recycled to the cell surface. Major determinants of enzyme efflux from the cell surface include the number and integrity of receptors, the association constant of the enzyme-receptor complex, and the presence in the medium of competing molecules with high affinity for lipoprotein lipase. In this model, modulation of lipoprotein lipase degradation rate may be a significant mechanism for acute regulation of enzyme efflux independent of changes in the rate of enzyme synthesis.  相似文献   

18.
3T3-L1 adipocytes in culture incorporated [35S]methionine into a protein which could be immunoprecipitated with chicken antiserum to bovine lipoprotein lipase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed this protein had an Mr of 55,000, similar to that of bovine lipoprotein lipase, and accounted for 0.1-0.5% of total protein synthesis in the adipocytes. Lipoprotein lipase protein was present in small amounts in confluent 3T3-L1 fibroblasts, and the amount increased many-fold as the cells differentiated into adipocytes. This increase was accompanied by parallel increases in cellular lipase activity and secretion. When cells were grown with [35S]methionine, the amount of label incorporated into lipoprotein lipase increased for 2 h and then leveled off. Pulse-chase experiments showed that half-life of newly synthesized lipase was about 1 h. Turnover of lipoprotein lipase in control cells involved both release to the medium and intracellular degradation. When N-linked glycosylation was blocked by tunicamycin, the cells synthesized a form of lipase that had a smaller Mr (48,000), was catalytically inactive, and was not released to the medium. Radioimmunoassay demonstrated that 3T3-L1 adipocytes contained an unexpectedly large amount of lipoprotein lipase protein. 55% of the enzyme protein in acetone/ether powder of the cells was insoluble in 50 mM NH3/NH4Cl at pH 8.1, a solution commonly used to extract lipoprotein lipase; 27% of the lipase protein was soluble but did not bind to heparin-Sepharose and had very low lipase activity; and the remaining 13% was soluble, bound to heparin-Sepharose, and had high lipolytic activity. About one-half of the lipase released spontaneously to the medium was inactive, and lipase inactivation proceeded in the medium with little loss of enzyme protein. Lipoprotein lipase released heparin, in contrast, was fully active and more stable. When protein synthesis was blocked by cycloheximide, the level of lipoprotein lipase activity in adipocytes decreased more rapidly than the amount of lipase protein in the cells. Most of the inactive lipoprotein lipase in adipocytes probably results from dissociation of active dimeric lipase, but some could be a precursor of active enzyme.  相似文献   

19.
Lipoprotein lipase activity in intact epididymal adipose tissue of fasted rats increased rapidly after treatment with insulin in vivo. In contrast, lipoprotein lipase activity in adipocytes isolated from the contralateral fat pads remained essentially unchanged. When adipocytes were incubated for 30 min at ambient temperature in vitro, about 2 times more lipoprotein lipase activity was found in the medium of cells from insulin-treated rats than in medium from cells of control animals. Following insulin treatment, extracts of tissue acetone powders separated by gel chromatography showed increases in both enzyme activity fractions obtained (designated lipoprotein lipase a and b). However, no consistent differences were observed between fractions derived from adipocyte acetone powders of insulin-treated and control animals. All the observed effects of insulin on lipoprotein lipase activity were abolished by cycloheximide treatment in vivo. These data indicate that following insulin treatment, increased lipoprotein lipase activity in adipose tissue results from enhanced enzyme secretion by the fat cell and subsequent accumulation in the tissue, thus implicating the adipocyte secretory mechanism as a major site of regulation of lipoprotein lipase activity in adipose tissue.  相似文献   

20.
The clearing factor lipase (lipoprotein lipase) activities of homogenates of fresh tissue and of acetone-ether powders have been compared in hearts from fed and starved rats. The activity of the enzyme measured in homogenates of acetone-ether powders is generally higher than that in homogenates of the fresh tissue. Activation is due to an effect of the acetone-ether treatment on enzyme which is associated with the tissue residue in fresh tissue homogenates. A similar activation occurs when the tissue residue is treated with deoxycholate. When rats are fasted, a marked increase in the clearing factor lipase activity of the heart occurs. Peak activities are reached after 10-24 hr, and thereafter the activity falls slowly. This pattern of activity is observed in homogenates of fresh tissue and of acetone-ether powders. The activity of clearing factor lipase in diaphragm muscle also increases in rats starved for 8 or 24 hr. The importance of the change in muscle clearing factor lipase activity on fasting in relation to triglyceride fatty acid utilization by this tissue is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号