首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
At least two species-specific gene products are required for signal transduction by interferon gamma (IFN-gamma). The first is the IFN-gamma receptor, which binds ligand with high affinity in a species-specific manner. The second is an undetermined species-specific signal transducer(s). To determine whether the human IFN-gamma receptor (hIFN-gamma R) interacts directly with this signal transducer(s) and, if so, with what functional domain(s), we constructed expression vectors for the hIFN-gamma R and three hybrid human-murine IFN-gamma receptors. The hybrid receptors contained the extracellular, human IFN-gamma (hIFN-gamma) binding domain of the hIFN-gamma R, either the human or murine transmembrane domain, and either the human or murine intracellular domain. The vectors encoding these receptors were stably transfected into two mouse cell lines, one of which (SCC-16-5) contains a single copy of human chromosome 21. The resulting cell lines were treated with hIFN-gamma, and murine major histocompatibility complex class I antigen expression was analyzed by immunofluorescence flow cytometry. All transfected cell lines lacking human chromosome 21 remained insensitive to hIFN-gamma. However, all four of the IFN-gamma receptors were able to signal when expressed in the cell line containing human chromosome 21. We conclude that the extracellular domain of the IFN-gamma receptor is involved not only in the species specificity of IFN-gamma binding but also in signalling through interaction with an as yet unidentified species-specific factor(s) encoded by a gene(s) on human chromosome 21.  相似文献   

3.
A chimeric receptor composed of the extracellular domain of the human T-cell antigen CD2 (T11) joined to the membrane-spanning segment and the intracellular tyrosine kinase domain of the human colony-stimulating factor 1 receptor (CSF-1R) was expressed in murine NIH 3T3 fibroblasts. Stimulation of these cells with monoclonal antibodies to CD2 induced phosphorylation of the chimeric glycoprotein on tyrosine, receptor downmodulation, and mitogenesis. In contrast, neither human CSF-1R nor the chimeric receptor was able to function in interleukin-2-dependent murine T cells. In fibroblasts, then, CSF-1 per se is not required for activation of the receptor kinase or for a biological response, whereas in T cells, CSF-1R may be unable to engage the downstream signal transduction machinery.  相似文献   

4.
5.
Molecular characterization of the murine interferon gamma receptor cDNA   总被引:5,自引:0,他引:5  
Interferon gamma receptors (IFN-gamma R) exhibit remarkable species specificity. In order to understand the basis for this phenomenon, we have isolated a recombinant cDNA clone corresponding to the mouse (Mu) IFN-gamma R. Microinjection of the mRNA synthesized in vitro corresponding to the cloned cDNA into Xenopus laevis oocytes resulted in the synthesis of a protein that specifically binds Mu-IFN-gamma. Analysis of murine genomic and RNA blots with the cDNA probe indicates the presence of a single gene and a single mRNA species of about 2300 bases. Sequence analysis of the cDNA encoding the Mu-IFN-gamma R and comparison with the corresponding human IFN-gamma R sequence shows about 68% conservation of the extracellular domains and 51% conservation of the cytoplasmic domains at the nucleotide level. The results indicate that, as expected, the sequence of the receptor confers species specificity for the binding of IFN-gamma to the cell surface receptor. Moreover, it was previously shown that a human factor is required in addition to the receptor for the human IFN-gamma to function in hamster or mouse cells (Jung, V., Rashidbaigi, A., Jones, C., Tischfield, J.A., Shows, T.B., and Pestka, S. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4151-4155). These results suggest an explanation for the second species-specific event required for function of the human receptor in mouse or hamster cells in that the intracellular domains are significantly different and thus cannot interact with the corresponding heterologous factor.  相似文献   

6.
Soluble receptors for gamma interferon (IFN-gamma) are secreted from cells infected by 17 orthopoxviruses, including vaccinia, cowpox, rabbitpox, buffalopox, elephantpox, and camelpox viruses, representing three species (vaccinia, cowpox, and campelpox viruses). The B8R open reading frame of vaccinia virus strain Western Reserve, which has sequence similarity to the extracellular binding domain of cellular IFN-gamma receptors (IFN-gamma Rs), is shown to encode an IFN-gamma binding activity by expression in recombinant baculovirus. The soluble virus IFN-gamma Rs bind IFN-gamma and, by preventing its interaction with the cellular receptor, interfere with the antiviral effects induced by this cytokine. Interestingly, in contrast to cellular IFN-gamma Rs, which are highly species specific, the vaccinia, cowpox, and camelpox virus IFN-gamma Rs bind and inhibit the biological activity of human, bovine, and rat IFN-gamma but not mouse IFN-gamma. This unique broad species specificity of the IFN-gamma R would aid virus replication in different species and suggests that vaccinia, cowpox, and camelpox viruses may have evolved in several species, possibly including humans but excluding mice. Last, the conservation of an IFN-gamma R in orthopoxviruses emphasizes the importance of IFN-gamma in defense against poxvirus infections.  相似文献   

7.
8.
The processing of luteinizing hormone receptor (LHR) shows marked differences in different species. While the human LHR is predominantly expressed as the mature, 90 kDa species, rat LHR exists mostly in the 70 kDa precursor form. Since the extracellular domain of the LHR is unusually large in comparison with other G protein-coupled receptors, the present studies examined the role of extracellular domain in its processing. FLAG-tagged chimeric LH receptors were constructed by substituting the extracellular domain of the human receptor in rat LHR (hrr) and the extracellular domain of the rat receptor in human LHR (rhh). The intracellular processing, ligand binding and recycling of the chimeric receptors were compared with that of the wild type receptors in 293T cells. The results showed that the human and rat LHR were expressed predominantly as 90 and 70 kDa species, respectively, as expected. The introduction of the rat extracellular domain into the human LHR (rhh) decreased the abundance of the mature form with an increase in the precursor form. Conversely, substitution of the extracellular domain of the rat LHR by the extracellular domain of the human LHR (hrr) led to an increase in the mature form with a corresponding decrease in the precursor form. Changes were also observed in the ligand binding and recycling of the wild type and chimeric receptors. These results suggest that the extracellular domain of the LHR is one of the determinants that confer its ability for proper maturation and cell surface expression.  相似文献   

9.
Eph, Elk, and Eck are prototypes of a large family of transmembrane protein-tyrosine kinases, which are characterized by a highly conserved cysteine-rich domain and two fibronectin type III repeats in their extracellular regions. Despite the extent of the Eph family, no extracellular ligands for any family member have been identified, and hence, little is known about the biological and biochemical properties of these receptor-like tyrosine kinases. In the absence of a physiological ligand for the Elk receptor, we constructed chimeric receptor molecules, in which the extracellular region of the Elk receptor is replaced by the extracellular, ligand-binding domain of the epidermal growth factor (EGF) receptor. These chimeric receptors were expressed in NIH 3T3 cells that lack endogenous EGF receptors to analyze their signaling properties. The chimeric EGF-Elk receptors became glycosylated, were correctly localized to the plasma membrane, and bound EGF with high affinity. The chimeric receptors underwent autophosphorylation and induced the tyrosine phosphorylation of a specific set of cellular proteins in response to EGF. EGF stimulation also induced DNA synthesis in fibroblasts stably expressing the EGF-Elk receptors. In contrast, EGF stimulation of these cells did not lead to visible changes in cellular morphology, nor did it induce loss of contact inhibition in confluent monolayers or growth in semisolid media. The Elk cytoplasmic domain is therefore able to induce tyrosine phosphorylation and DNA synthesis in response to an extracellular ligand, suggesting that Elk and related polypeptides function as ligand-dependent receptor tyrosine kinases.  相似文献   

10.
The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMRalpha) and a common signal-transducing beta-subunit (hbetac) that is shared with the interleukin-3 and -5 receptors. We have previously identified a constitutively active extracellular point mutant of hbetac, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287). This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMRalpha (mGMRalpha) subunit, since introduction of mGMRalpha, but not hGMRalpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence. Experiments utilizing mouse/human chimeric GMRalpha subunits indicated that the species specificity lies in the extracellular domain of GMRalpha. Importantly, the requirement for mGMRalpha correlated with the ability of I374N (but not wild-type hbetac) to constitutively associate with mGMRalpha. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMRalpha surface expression. Taken together, these findings suggest a critical role for association with GMRalpha in the constitutive activity of I374N.  相似文献   

11.
The development and maintenance of T regulatory (Treg) cells critically depend on IL-2. This requirement for IL-2 might be due to specificity associated with IL-2R signal transduction or because IL-2 was uniquely present in the niche in which Treg cells reside. To address this issue, we examined the capacity of IL-7R-dependent signaling to support Treg cell production and prevent autoimmunity in IL-2Rbeta(-/-) mice. Expression of transgenic wild-type IL-7R or a chimeric receptor that consisted of the extracytoplasmic domain of the IL-7R alpha-chain and the cytoplasmic domain of IL-2R beta-chain in IL-2Rbeta(-/-) mice did not prevent autoimmunity. Importantly, expression of a chimeric receptor that consisted of the extracytoplasmic domain of the IL-2R beta-chain and the cytoplasmic domain of IL-7R alpha-chain in IL-2Rbeta(-/-) mice led to Treg cells production in the thymus and periphery and prevented autoimmunity. Signaling through the IL-2R or chimeric IL-2Rbeta/IL-7Ralpha in vivo or the culture of thymocytes from IL-2Rbeta(-/-) mice with IL-7 led to up-regulation of Foxp3 and CD25 on Treg cells. These findings indicate that IL-7R signal transduction is competent to promote Treg cell production, but this signaling requires triggering through IL-2 by binding to the extracytoplasmic portion of the IL-2R via this chimeric receptor. Thus, a major factor controlling the nonredundant activity of the IL-2R is selective compartmentalization of IL-2-producing cells with Treg cells in vivo.  相似文献   

12.
With the use of a partial sequence of the human genome, we identified a gene encoding a novel soluble receptor belonging to the class II cytokine receptor family. This gene is positioned on chromosome 6 in the vicinity of the IFNGR1 gene in a head-to-tail orientation. The gene consists of six exons and encodes a 231-aa protein with a 21-aa leader sequence. The secreted mature protein demonstrates 34% amino acid identity to the extracellular domain of the IL-22R1 chain. Cross-linking experiments demonstrate that the protein binds IL-22 and prevents binding of IL-22 to the functional cell surface IL-22R complex, which consists of two subunits, the IL-22R1 and the IL-10R2c chains. Moreover, this soluble receptor, designated IL-22-binding protein (BP), is capable of neutralizing IL-22 activity. In the presence of the IL-22BP, IL-22 is unable to induce Stat activation in IL-22-responsive human lung carcinoma A549 cells. IL-22BP also blocked induction of the suppressors of cytokine signaling-3 (SOCS-3) gene expression by IL-22 in HepG2 cells. To further evaluate IL-22BP action, we used hamster cells expressing a modified IL-22R complex consisting of the intact IL-10R2c and the chimeric IL-22R1/gammaR1 receptor in which the IL-22R1 intracellular domain was replaced with the IFN-gammaR1 intracellular domain. In these cells, IL-22 activates biological activities specific for IFN-gamma, such as up-regulation of MHC class I Ag expression. The addition of IL-22BP neutralizes the ability of IL-22 to induce Stat activation and MHC class I Ag expression in these cells. Thus, the soluble receptor designated IL-22BP inhibits IL-22 activity by binding IL-22 and blocking its interaction with the cell surface IL-22R complex.  相似文献   

13.
Intrinsic signaling functions of the beta4 integrin intracellular domain   总被引:2,自引:0,他引:2  
A key issue regarding the role of alpha6beta4 in cancer biology is the mechanism by which this integrin exerts its profound effects on intracellular signaling, including growth factor-mediated signaling. One approach is to evaluate the intrinsic signaling capacity of the unique beta4 intracellular domain in the absence of contributions from the alpha6 subunit and tetraspanins and to assess the ability of growth factor receptor signaling to cooperate with this domain. Here, we generated a chimeric receptor composed of the TrkB extracellular domain and the beta4 transmembrane and intracellular domains. Expression of this chimeric receptor in beta4-null cancer cells enabled us to assess the signaling potential of the beta4 intracellular domain alone or in response to dimerization using brain-derived neurotrophic factor, the ligand for TrkB. Dimerization of the beta4 intracellular domain results in the binding and activation of the tyrosine phosphatase SHP-2 and the activation of Src, events that also occur upon ligation of intact alpha6beta4. In contrast to alpha6beta4 signaling, however, dimerization of the chimeric receptor does not activate either Akt or Erk1/2. Growth factor stimulation induces tyrosine phosphorylation of the chimeric receptor but does not enhance its binding to SHP-2. The chimeric receptor is unable to amplify growth factor-mediated activation of Akt and Erk1/2, and growth factor-stimulated migration. Collectively, these data indicate that the beta4 intracellular domain has some intrinsic signaling potential, but it cannot mimic the full signaling capacity of alpha6beta4. These data also question the putative role of the beta4 intracellular domain as an "adaptor" for growth factor receptor signaling.  相似文献   

14.
Receptor tyrosine kinases (RTKs) transduce external signals to the interior of the cell via a cytoplasmic kinase domain. We demonstrated previously that ligand-induced kinase activation of the colony-stimulating factor-1 receptor (CSF-1R) occurs via receptor oligomerization without propagation of conformational changes through the transmembrane (TM) domain (Lee, A. W., and Nienhuis, A. W. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7270-7274). We have now examined the role of the different subdomains in the metabolic and signaling properties of CSF-1R. Two types of chimeric receptors have been utilized, Glyfms A, with the extracellular and TM domains of glycophorin A (GpA) and the cytoplasmic domain of CSF-1R, and Glyfms B, where only the extracellular domain originates from GpA. Glyfms A was found to exhibit a higher basal level of in vitro kinase activity, an increased associated phosphatidylinositol (PtdIns) 3-kinase activity and to support enhanced cellular mitogenesis, compared with wild-type CSF-1R or to Glyfms B. The constitutive activation of Glyfms A is consistent with the hypothesis that the TM domain may play a role in receptor oligomerization. Cross-linking with anti-GpA antibodies activated the kinase function of Glyfms B leading to an increase in PtdIns 3-kinase association and to the transmission of a mitogenic signal. Our results indicate that an activated kinase domain contains the major determinant for coupling with PtdIns 3-kinase, independent of extracellular and TM sequences and of ligand binding. Both chimeric receptors underwent internalization in the presence of anti-GpA antibodies but were not degraded, including the tyrosine-phosphorylated and kinase-active population. These results suggest that structural determinants in the extracellular domain must be important for targeting internalized receptors for lysosomal degradation.  相似文献   

15.
Since many cell functions are regulated by members of the cytokine receptor superfamily, the artificial mimicry of the cytokine receptor system would be attractive for cellular engineering. We previously showed that an antibody/cytokine receptor chimera can transduce a growth signal in response to non-natural ligands, such as fluorescein-conjugated BSA. However, considerable background of cell proliferation was observed without antigen. Therefore, we redesigned chimeric receptor constructs with different combinations of domains containing anti-fluorescein single chain Fv (ScFv), extracellular D1/D2 as well as transmembrane domains of erythropoietin receptor (EpoR), and the intracellular domain of glycoprotein 130 (gp130), to obtain strictly fluorescein-dependent chimeric receptors. When interleukin-3-dependent Ba/F3 cells were transduced with retroviral vectors encoding individual chimeric receptors, the chimeras either with both D1 and D2 domains or without any EpoR extracellular domain attained a strict ligand-dependent ON/OFF regulation.  相似文献   

16.
The biologic effects of IFN-gamma are mediated through a receptor that is expressed in relatively low abundance on normal mammalian cells. As a consequence, investigations of the physicochemical and ligand-binding properties of the purified receptor have been limited. The work reported here characterizes a secreted form of the receptor for mouse IFN-gamma, made by deletion of the nucleotides that code for the anchoring domain from a cDNA that encodes the receptor binding protein and its related signal peptide. When transfected into rat XC cells, this construct produced up to approximately 1 mg/liter of a secreted protein that had the characteristics of the native receptor. Both the secreted protein and its mRNA were of sizes that were consistent with loss of the transmembrane region. The protein was detectable by a mAb that is specific for an epitope that is found in the ligand binding site of the receptor for mouse IFN-gamma, as well as by a goat polyclonal IgG that is monospecific for the mouse IFN-gamma R. Supernates that contained the secreted protein blocked binding of IFN-gamma to mouse IFN-gamma R and inhibited in a dose-dependent manner the IFN-gamma-mediated priming of mouse bone marrow culture-derived macrophages for tumor cell killing. Availability of relatively large amounts of a secreted protein that retains ligand-binding activity should facilitate purification and basic studies of the receptor binding protein and could provide new approaches to the treatment/prevention of diseases that arise due to inappropriate response of cells to IFN-gamma. In addition, because this secreted receptor, unlike others, consists of both the extracellular and intracellular domains, it is likely that it will be useful in determining how the cytoplasmic portion of the receptor is involved in receptor function.  相似文献   

17.
NK cells express receptors that allow them to recognize pathogens and activate effector functions such as cytotoxicity and cytokine production. Among these receptors are the recently identified TLRs that recognize conserved pathogen structures and initiate innate immune responses. We demonstrate that human NK cells express TLR3, TLR7, and TLR8 and that these receptors are functional. TLR3 is expressed at the cell surface where it functions as a receptor for polyinosinic acid:cytidylic acid (poly(I:C)) in a lysosomal-independent manner. TLR7/8 signaling is sensitive to chloroquine inhibition, indicating a requirement for lysosomal signaling as for other cell types. Both R848, an agonist of human TLR7 and TLR8, and poly(I:C) activate NK cell cytotoxicity against Daudi target cells. However, IFN-gamma production is differentially regulated by these TLR agonists. In contrast to poly(I:C), R848 stimulates significant IFN-gamma production by NK cells. This is accessory cell dependent and is inhibited by addition of a neutralizing anti-IL-12 Ab. Moreover, stimulation of purified monocyte populations with R848 results in IL-12 production, and reconstitution of purified NK cells with monocytes results in increased IFN-gamma production in response to R848. In addition, we demonstrate that while resting NK cells do not transduce signals directly in response to R848, they can be primed to do so by prior exposure to either IL-2 or IFN-alpha. Therefore, although NK cells can be directly activated by TLRs, accessory cells play an important and sometimes essential role in the activation of effector functions such as IFN-gamma production and cytotoxicity.  相似文献   

18.
We found that E-cadherin and epidermal growth factor receptor (EGFR) are associated in mammary epithelial cells and that E-cadherin engagement in these cells induces transient activation of EGFR, as previously seen in keratinocytes (37). In contrast, EGFR does not associate with and is not activated by N-cadherin. Analysis of cells expressing chimeric cadherins revealed that the extracellular domain of E-cadherin is required for interaction with and activation of EGFR. This activation results in tyrosine phosphorylation of known EGFR substrates and reduction in focal adhesions. These interactions, however, are not necessary for suppression of cell motility by E-cadherin.  相似文献   

19.
E-cadherin binding modulates EGF receptor activation   总被引:1,自引:0,他引:1  
We found that E-cadherin and epidermal growth factor receptor (EGFR) are associated in mammary epithelial cells and that E-cadherin engagement in these cells induces transient activation of EGFR, as previously seen in keratinocytes (37). In contrast, EGFR does not associate with and is not activated by N-cadherin. Analysis of cells expressing chimeric cadherins revealed that the extracellular domain of E-cadherin is required for interaction with and activation of EGFR. This activation results in tyrosine phosphorylation of known EGFR substrates and reduction in focal adhesions. These interactions, however, are not necessary for suppression of cell motility by E-cadherin.  相似文献   

20.
Fully functional chimeric receptors, consisting of major epidermal growth factor and insulin receptor domains, were co-expressed with kinase-negative epidermal growth factor and insulin receptor mutants in human kidney fibroblasts. Under these conditions, homologous extracellular and cytoplasmic domains mediated association of receptors and their precursors. The significance of receptor-receptor interaction was confirmed by transphosphorylation of kinase-negative receptors by ligand-activated chimeric receptors, which was observed between receptors sharing the same cytoplasmic domain as well as between receptors bearing only the same extracellular domain and containing heterologous kinases. Furthermore, the impaired ligand internalization capacity of a kinase-deficient insulin receptor was partially restored by transphosphorylation. Our experiments suggest interreceptor transphosphorylation and transactivation as a possible mechanism for signal amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号