首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessing the impact of transgenic plant products on soil organisms   总被引:21,自引:0,他引:21  
Little is known about the impact of transgenic plant products on soil organisms. However, previous research with synthetic organics, allelochemicals, and extracellular enzymes can be used to guide future research in this area. Projects designed to quantify the impact of transgenic plants on soil organisms must clearly establish that the gene products are responsible for any observed changes. This can only be achieved by determining the fate of transgenic plant gene products during the period of the soil bioassay. The overall impact of transgenic plants will be dictated by not only the primary gene product, but secondary products resulting from abiotic and biotic soil reactions. Primary and secondary products may exhibit both acute and chronic impacts. Such impacts are best quantified using a soil microcosm in which fungal populations and micro- and mesofauna are monitored.  相似文献   

2.
土壤生物与土壤污染研究前沿与展望   总被引:11,自引:0,他引:11  
随着社会经济发展,人类生产活动对自然环境产生越来越广泛深刻的影响,土壤污染已成为危及生态系统稳定、农产品质量安全和人体健康的突出环境问题之一。重金属、有机污染化合物、病原菌及抗性基因等各类污染物大量进入土壤后,对土壤生物系统造成毒害作用,影响到土壤生态功能;另一方面,土壤生物如细菌、真菌、土壤动物等在一定程度上能够适应土壤污染,深刻影响着污染物在土壤中的迁移转化过程,在土壤污染修复中具有潜在重要作用。从土壤污染的生态毒理效应、土壤生物对土壤污染的响应与适应机制、污染土壤修复原理与技术等三方面综述了土壤生物与土壤污染相关研究前沿,展望了重点研究方向。  相似文献   

3.
Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi, and to study community and ecosystem responses to CO2 and N enrichment. Responses of plants, AM fungi, phospholipid fatty acids and community-level physiological profiles were measured after two growing seasons. Ecosystem responses were examined by measuring net primary production (NPP), evapotranspiration, total soil organic matter (SOM), and extractable mineral N. Structural equation modeling was used to examine the causal relationships among treatments and response variables. We found that while CO2 and N tended to directly impact ecosystem functions (evapotranspiration and NPP, respectively), AM fungi indirectly impacted ecosystem functions by influencing the community composition of plants and other root fungi, soil fungi and soil bacteria. We found that the mycotrophic status of the dominant plant species in the mesocosms determined whether the presence of AM fungi increased or decreased NPP. Mycotrophic grasses dominated the mesocosm communities during the first growing season, and the mycorrhizal treatments had the highest NPP. In contrast, nonmycotrophic forbs were dominant during the second growing season and the mycorrhizal treatments had the lowest NPP. The composition of the plant community strongly influenced soil N, and the community composition of soil organisms strongly influenced SOM accumulation in the mesocosms. These results show how linkages between above- and belowground communities can determine ecosystem responses to global change.  相似文献   

4.
在季节性积雪地区,冬季气候变暖导致积雪变薄、积雪不连续、融雪提前及雪盖面积缩小等现象。然而相较于氮沉降、增温、降水变化等全球变化因子,目前尚缺乏积雪因子对陆地生态系统过程和功能影响的系统报道。为加深人们对积雪特征变化生态后果的认知,综述了积雪深度和融雪时间变化对植被物候和群落组成、凋落物分解、土壤碳氮过程、温室气体排放和土壤微食物网(土壤动物和微生物)的影响。由于模拟积雪变化手段不同和复杂的气候、土壤背景,生态系统各要素对积雪特征变化的响应规律存在较大的分异和不确定性。例如,在未来气候变暖导致积雪变薄和融雪提前情景下,植被物候提前,生长季延长,导致生产力增加和凋落物数量增加,禾草比例减少导致凋落物质量增加,早春温度高刺激微生物活性,凋落物分解速率高,促进土壤碳氮周转过程。但积雪减少和融雪提前导致的早春低温和夏季干旱也可能引起植被生产力下降,凋落物数量减少质量降低,土壤微生物活性低,分解速率低,从而减缓碳氮周转过程。此外,积雪特征变化对植被特征和土壤碳氮过程影响相关研究目前还存在以下问题:1)积雪深度和融雪时间对生态系统的影响是否存在交互效应仍缺乏关注,且积雪变化对后续生长季是否存在持续...  相似文献   

5.
6.
Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition and nutrient cycling processes. We determined how communities of these organisms respond to changes in moisture availability and whether common patterns occur along fine‐scale gradients of soil moisture within four individual ecosystem types (mesic, xeric and arid grasslands and a polar desert) located in the western United States and Antarctica, as well as across a cross‐ecosystem moisture gradient (CEMG) of all four ecosystems considered together. An elevation transect of three sampling plots was monitored within each ecosystem and soil samples were collected from these plots and from existing experimental precipitation manipulations within each ecosystem once in fall of 2009 and three times each in 2010 and 2011. Mites and nematodes were sorted to trophic groups and analyzed to determine community responses to changes in soil moisture availability. We found that while both mites and nematodes increased with available soil moisture across the CEMG, within individual ecosystems, increases in soil moisture resulted in decreases to nematode communities at all but the arid grassland ecosystem; mites showed no responses at any ecosystem. In addition, we found changes in proportional abundances of mite and nematode trophic groups as soil moisture increased within individual ecosystems, which may result in shifts within soil food webs with important consequences for ecosystem functioning. We suggest that communities of soil animals at local scales may respond predictably to changes in moisture availability regardless of ecosystem type but that additional factors, such as climate variability, vegetation composition, and soil properties may influence this relationship over larger scales.  相似文献   

7.
Belowground biodiversity supports multiple ecosystem functions and services that humans rely on. However, there is a dearth of studies exploring the determinants of the biodiversity–ecosystem function (BEF) relationships, particularly in intensely managed agricultural ecosystems. Here, we reported significant and positive relationships between soil biodiversity of multiple organism groups and multiple ecosystem functions in 228 agricultural fields, relating to crop yield, nutrient provisioning, element cycling, and pathogen control. The relationships were influenced by the types of organisms that soil phylotypes with larger sizes or at higher trophic levels, for example, invertebrates or protist predators, appeared to exhibit weaker or no BEF relationships when compared to those with smaller sizes or at lower trophic levels, for example, archaea, bacteria, fungi, and protist phototrophs. Particularly, we highlighted the role of soil network complexity, reflected by co-occurrence patterns among multitrophic-level organisms, in enhancing the link between soil biodiversity and ecosystem functions. Our results represent a significant advance in forecasting the impacts of belowground multitrophic organisms on ecosystem functions in agricultural systems, and suggest that soil multitrophic network complexity should be considered a key factor in enhancing ecosystem productivity and sustainability under land-use intensification.  相似文献   

8.
The conversion of natural grasslands to cultivated pastures can have a significant impact on the composition and structure of soil macro- and mesofauna groups, compromising the resilience of these organisms and the ecosystem services they provide. We studied the responses of these groups to increasing levels of soil disturbance across a gradient of four land management practices: Natural grassland (NG), Improved-natural grassland (IG), Perennial-cultivated pasture (PP), and Annual-cultivated pasture (AP). The NG area had a higher abundance of macrofauna, greater dominance of certain groups, particularly Isoptera, and a lower abundance of mesofauna. On the other hand, the IG area had a higher abundance and diversity of macro- and mesofauna, with a lower dominance of specific groups. The PP area had a higher abundance of Coleoptera, Oligochaeta, and Hemiptera, whereas the AP area, despite soil disturbance, showed a higher abundance of mesofauna, particularly mites, Collembola, and Enchytraeidae, but lower diversity. Different grassland management practices have significantly altered the composition and structure of macro- and mesofauna groups, resulting in high dissimilarity between communities. We recommend IG as a more productive and sustainable alternative to the total replacement of natural vegetation (NG) with intensified converted pastures (PP and AP), as it maintains soil fauna diversity and ecosystem services.  相似文献   

9.
城市化对土壤生态环境的影响研究进展   总被引:6,自引:0,他引:6  
城市土壤是城市生态系统中最重要的组成部分之一,发挥着重要的生态系统服务功能。在全球快速城市化的背景下,城市土壤受到人类活动的强烈干扰,土壤物理、化学性质发生改变,土壤退化与污染日益加重。城市土壤退化导致土壤动物生态特征与行为模式发生变化,城市景观格局与土地利用类型的变化强烈影响了土壤动物的栖息地,为土壤动物的生存与生物多样性带来潜在威胁;另一方面,城市化过程改变了土壤微生物群落组成与功能特征。城市化直接影响了城市土壤维持植物生长、土壤自然消减能力以及碳储存功能等重要的生态系统服务功能。针对城市化过程对土壤生态环境产生的一系列影响,需要采用科学的管理方式,改善土壤理化性质,提高土壤环境质量,保护和恢复土壤生物多样性,从而增强城市土壤的生态系统服务功能。  相似文献   

10.
Responses of soil biota to elevated atmospheric carbon dioxide   总被引:16,自引:2,他引:14  
Increasing concentrations of atmospheric CO2 could have dramatic effects upon terrestrial ecosystems including changes in ecosystem structure, nutrient cycling rates, net primary production, C source-sink relationships and successional patterns. All of these potential changes will be constrained to some degree by below ground processes and mediated by responses of soil biota to indirect effects of CO2 enrichment. A review of our current state of knowledge regarding responses of soil biota is presented, covering responses of mycorrhizae, N-fixing bacteria and actinomycetes, soil microbiota, plant pathogens, and soil fauna. Emphasis will be placed on consequences to biota of increasing C input through the rhizosphere and resulting feedbacks to above ground systems. Rising CO2 may also result in altered nutrient concentrations of plant litter, potentially changing decomposition rates through indirect effects upon decomposer communities. Thus, this review will also cover current information on decomposition of litter produced at elevated CO2. Summary Predictably, the responses of soil biota to CO2 enrichment and the degree of experimental emphasis on them increase with proximity to, and intimacy with, roots. Symbiotic associations are all stimulated to some degree. Total plant mycorrhization increases with elevated CO2. VAM fungi increase proportionately with fine root length/mass increase. ECM fungi, however, exhibit greater colonization per unit root length/mass at elevated CO2 than at current atmospheric levels. Total N-fixation per plant increases in all species examined, although the mechanisms of increase, as well as the eventual benefit to the host relative to N uptake may vary. Microbial responses are unclear. The assumption that changes in root exudation will drive increased mineralization and facilitate nutrient uptake should be examined experimentally, in light of recent models. Microbial results to date suggest that metabolic activity (measured as changes in process rates) is stimulated by root C input, rather than population size (measured by cell or colony counts). Insufficient evidence exists to predict responses of either soil-borne plant pathogens or soil fauna (i.e., food web responses). These are areas requiring attention, the first for its potential to limit ecosystem production through disease and the second because of its importance to nutrient cycling processes. Preliminary data on foliar litter decomposition suggests that neither nutrient ratios nor decomposition rates will be affected by rising CO2. This is another important area that may be better understood as the number of longer term studies with more realistic CO2 exposures increase. Evidence continues to mount that C fixation increases with CO2 enrichment and that the bulk of this C enters the belowground component of ecosystems. The global fate and effects of this additional C may affect all hierarchical levels, from organisms to ecosystems, and will be largely determined by responses of soil biota.  相似文献   

11.
Soil health in agricultural systems   总被引:2,自引:0,他引:2  
Soil health is presented as an integrative property that reflects the capacity of soil to respond to agricultural intervention, so that it continues to support both the agricultural production and the provision of other ecosystem services. The major challenge within sustainable soil management is to conserve ecosystem service delivery while optimizing agricultural yields. It is proposed that soil health is dependent on the maintenance of four major functions: carbon transformations; nutrient cycles; soil structure maintenance; and the regulation of pests and diseases. Each of these functions is manifested as an aggregate of a variety of biological processes provided by a diversity of interacting soil organisms under the influence of the abiotic soil environment. Analysis of current models of the soil community under the impact of agricultural interventions (particularly those entailing substitution of biological processes with fossil fuel-derived energy or inputs) confirms the highly integrative pattern of interactions within each of these functions and leads to the conclusion that measurement of individual groups of organisms, processes or soil properties does not suffice to indicate the state of the soil health. A further conclusion is that quantifying the flow of energy and carbon between functions is an essential but non-trivial task for the assessment and management of soil health.  相似文献   

12.
The influence of biotic interactions on soil biodiversity   总被引:12,自引:1,他引:12  
Wardle DA 《Ecology letters》2006,9(7):870-886
Belowground communities usually support a much greater diversity of organisms than do corresponding aboveground ones, and while the factors that regulate their diversity are far less well understood, a growing number of recent studies have presented data relevant to understanding how these factors operate. This review considers how biotic factors influence community diversity within major groups of soil organisms across a broad spectrum of spatial scales, and addresses the mechanisms involved. At the most local scale, soil biodiversity may potentially be affected by interactions within trophic levels or by direct trophic interactions. Within the soil, larger bodied invertebrates can also influence diversity of smaller sized organisms by promoting dispersal and through modification of the soil habitat. At larger scales, individual plant species effects, vegetation composition, plant species diversity, mixing of plant litter types, and aboveground trophic interactions, all impact on soil biodiversity. Further, at the landscape scale, soil diversity also responds to vegetation change and succession. This review also considers how a conceptual understanding of the biotic drivers of soil biodiversity may assist our knowledge of key topics in community and ecosystem ecology, such as aboveground–belowground interactions, and the relationship between biodiversity and ecosystem functioning. It is concluded that an improved understanding of what drives the diversity of life in the soil, incorporated within appropriate conceptual frameworks, should significantly aid our understanding of the structure and functioning of terrestrial communities.  相似文献   

13.
Biodiversity, both aboveground and belowground, is negatively affected by global changes such as drought or warming. This loss of biodiversity impacts Earth's ecosystems, as there is a positive relationship between biodiversity and ecosystem functioning (BEF). Even though soils host a large fraction of biodiversity that underlies major ecosystem functions, studies exploring the relationship between soil biodiversity and ecosystem functioning (sBEF) as influenced by global change drivers (GCDs) remain scarce. Here we highlight the need to decipher sBEF relationships under the effect of interactive GCDs that are intimately connected in a changing world. We first state that sBEF relationships depend on the type of function (e.g., C cycling or decomposition) and biodiversity facet (e.g., abundance, species richness, or biomass) considered. Then, we shed light on the impact of single and interactive GCDs on soil biodiversity and sBEF and show that results from scarce studies studying interactive effects range from antagonistic to additive to synergistic when two individual GCDs cooccur. This indicates the need for studies quantitatively accounting for the impacts of interactive GCDs on sBEF relationships. Finally, we provide guidelines for optimized methodological and experimental approaches to study sBEF in a changing world that will provide more valuable information on the real impact of (interactive) GCDs on sBEF. Together, we highlight the need to decipher the sBEF relationship in soils to better understand soil functioning under ongoing global changes, as changes in sBEF are of immediate importance for ecosystem functioning.  相似文献   

14.
The relative contribution of different soil organism groups to nutrient cycling has been quantified for a number of ecosystems. Some functions, particularly within the N-cycle, are carried out by very specific organisms. Others, including those of decomposition and nutrient release from organic inputs are, however, mediated by a diverse group of bacteria, protozoa, fungi and invertebrate animals. Many authors have hypothesized that there is a high degree of equivalence and flexibility in function within this decomposer community and thence a substantial extent of redundancy in species richness and resilience in functional capacity. Three case studies are presented to examine the relationship between soil biodiversity and nitrogen cycling under global change in ecosystem types from three latitudes, i.e. tundra, temperate grassland and tropical rainforest. In all three ecosystems evidence exists for the potential impact of global change factors (temperature change, CO2 enrichment, land-use-change) on the composition and diversity of the soil community as well as on various aspects of the nitrogen and other cycles. There is, however, very little unequivocal evidence of direct causal linkage between species richness and nutrient cycling efficiency. Most of the changes detected are shifts in the influence of major functional groups of the soil biota (e.g. between microflora and fauna in decomposition). There seem to be few data, however, from which to judge the significance of changes in diversity within functional groups. Nonetheless the soil biota are hypothesized to be a sensitive link between plant detritus and the availability of nutrients to plant uptake. Any factors affecting the quantity or quality of plant detritus is likely to change this link. Rigorous experimentation on the relationships between soil species richness and the regulation or resilience of nutrient cycles under global change thus remains a high priority.  相似文献   

15.
Ant biodiversity and its relationship to ecosystem functioning: a review   总被引:29,自引:0,他引:29  
Ants are important components of ecosystems not only because they constitute a great part of the animal biomass but also because they act as ecosystem engineers. Ant biodiversity is incredibly high and these organisms are highly responsive to human impact, which obviously reduces its richness. However, it is not clear how such disturbance damages the maintenance of ant services to the ecosystem. Ants are important in below ground processes through the alteration of the physical and chemical environment and through their effects on plants, microorganisms, and other soil organisms. This review summarizes the information available on ant biodiversity patterns, how it can be quantified, and how biodiversity is affected by human impacts such as land use change, pollution, invasions, and climate change. The role of ants in ecosystems is discussed, mainly from the perspective of the effects of ground-dwelling ants on soil processes and function, emphasizing their role as ecosystem engineers. Some lines of research are suggested after demonstrating the gaps in our current information on ant-soil interactions.  相似文献   

16.
释放后的转抗病虫基因作物对土壤生物群落的影响   总被引:11,自引:0,他引:11  
土壤生物,尤其是土壤微生物多样性与活性的保持是农业生态系统健康稳定的基础,农业活动尤其是农作物植被类型的改变对土壤生物的群落结构和活性具有显著的影响。释放后的转基因作物作为生态系统的一种新的生物组分,被引入农田生态系统之间后所引发的农田生物群落(包括土壤微生物群落)的变化及其对农业生态系统的健康与稳定产生的影响,已成为研究热点,本文对转抗虫Bt基因作物、转T4-溶菌酶基因作物,转蛋白酶抑制剂I基因作物的基因产物、作物残体在土壤中的行为(如降解产物的存留形态与生物活性)及其对根际或残体周围土壤中各类生物,尤其是微生物群落结构与功能的影响进行了简要综合评述,指出基因表达产物的后效肯定是存在的且长远的,由其引发的土壤生物群落结构的变化是复杂的,因而有必要对不同类型的转基因作物释放后的生态效应做长期的跟踪研究,建议未来的研究工作应集中在以下3个方面:(1)不同的转基因表达产物在环境中的迁移、结构变化、消长动态及其对生物保持毒杀性的时间;(2)不同类型转基因的植物对土壤生物群落结构的影响趋势;(3)在实验条件下,研究分离纯化的各种转基因表达产物对土壤各生物功能类群的影响。  相似文献   

17.
Better understanding of the connection between aboveground plant communities and belowground soil organisms and processes has led to an explosion in recent research on the applications of this link to the field of ecological restoration. Research is only beginning to have the capacity to link soil organisms and specific ecosystem functions. Establishing general ecological principles of the role microbial communities have during ecological restoration is also still in its infancy. As such, the literature is at a critical point to generate a Special Feature that brings together novel approaches of linking soil and restoration to promote more regular inclusion and consideration of soil organisms and soil‐based processes in ecological restoration. In this special feature, we bring together nine research articles from different ecosystems that study the relationship between restoration activities, soil microbial communities, and soil properties. From these research articles, we describe two primary themes: (1) research on the impacts of ecosystem‐specific restoration activities on soil organisms and processes and (2) research testing methods of soil manipulation to improve restoration outcomes. We hope to inspire readers and restoration practitioners to consider soil microbes and soil processes in their research, restoration projects, and world views.  相似文献   

18.
The response of soil biotas to climate change has the potential to regulate multiple ecosystem functions. However, it is still challenging to accurately predict how multiple climate change factors will affect multiple ecosystem functions. Here, we assessed the short-term responses of agroecosystem multifunctionality to a factorial combination of elevated CO2 (+200 ppm) and O3 (+40 ppb) and identified the key soil biotas (i.e., bacteria, fungi, protists, and nematodes) concerning the changes in the multiple ecosystem functions for two rice varieties (Japonica, Nanjing 5055 vs. Wuyujing 3). We provided strong evidence that combined treatment rather than individual treatments of short-term elevated CO2 and O3 significantly increased the agroecosystem multifunctionality index by 32.3% in the Wuyujing 3 variety, but not in the Nanjing 5055 variety. Soil biotas exhibited an important role in regulating multifunctionality under short-term elevated CO2 and O3, with soil nematode abundances better explaining the changes in ecosystem multifunctionality than soil biota diversity. Furthermore, the higher trophic groups of nematodes, omnivores-predators served as the principal predictor of agroecosystem multifunctionality. These results provide unprecedented new evidence that short-term elevated CO2 and O3 can potentially affect agroecosystem multifunctionality through soil nematode abundances, especially omnivores-predators. Our study demonstrates that high trophic groups were specifically beneficial for regulating multiple ecosystem functions and highlights the importance of soil nematode communities for the maintenance of agroecosystem functions and health under climate change in the future.  相似文献   

19.
土壤动物与N素循环及对N沉降的响应   总被引:15,自引:7,他引:15  
徐国良  莫江明  周国逸  彭少麟 《生态学报》2003,23(11):2453-2463
以主要的生态过程之一——N循环为对象,论述了土壤动物不仅对凋落物的分解有重要影响,而且在N素矿化和植物对N的吸收过程中也起着重要作用。同时,日益严重的全球变化问题之一——N沉降对土壤动物的多样性及其在生态系统中的功能构成了极大的威胁。另还对土壤动物与N循环研究的方法、土壤动物在N循环过程中的作用机制、热带地区的需求及N沉降下土壤动物的响应作了探讨,并提出,开展大尺度的专类研究及长期定位研究成为下一步研究的需要。  相似文献   

20.
Livestock grazing often alters aboveground and belowground communities of grasslands and their mediated carbon (C) and nitrogen (N) cycling processes at the local scale. Yet, few have examined whether grazing‐induced changes in soil food webs and their ecosystem functions can be extrapolated to a regional scale. We investigated how large herbivore grazing affects soil micro‐food webs (microbes and nematodes) and ecosystem functions (soil C and N mineralization), using paired grazed and ungrazed plots at 10 locations across the Mongolian Plateau. Our results showed that grazing not only affected plant variables (e.g., biomass and C and N concentrations), but also altered soil substrates (e.g., C and N contents) and soil environment (e.g., soil pH and bulk density). Grazing had strong bottom‐up effects on soil micro‐food webs, leading to more pronounced decreases at higher trophic levels (nematodes) than at lower trophic levels (microbes). Structural equation modeling showed that changes in plant biomass and soil environment dominated grazing effects on microbes, while nematodes were mainly influenced by changes in plant biomass and soil C and N contents; the grazing effects, however, differed greatly among functional groups in the soil micro‐food webs. Grazing reduced soil C and N mineralization rates via changes in plant biomass, soil C and N contents, and soil environment across grasslands on the Mongolian Plateau. Spearman's rank correlation analysis also showed that grazing reduced the correlations between functional groups in soil micro‐food webs and then weakened the correlation between soil micro‐food webs and soil C and N mineralization. These results suggest that changes in soil micro‐food webs resulting from livestock grazing are poor predictors of soil C and N processes at regional scale, and that the relationships between soil food webs and ecosystem functions depend on spatial scales and land‐use changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号