首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The SNAREs syntaxin 7, syntaxin 8, vti1b, and endobrevin/VAMP8 function in the fusion of late endosomes. Although the core complex formed by these SNAREs is very similar to the neuronal SNARE complex, it differs from the neuronal complex in that three of the four SNAREs contain extended N-terminal regions of unknown structure and function. Here we show that the N-terminal regions of syntaxin 7, syntaxin 8, and vti1b contain well folded alpha-helical domains. Multidimensional NMR spectroscopy revealed that in syntaxin 7 and vti1b, the domains form three-helix bundles resembling those of syntaxin 1, Sso1p, and Vam3p. The three-helix bundle domain of vti1b is the first of its kind identified in a SNARE outside the syntaxin family. Only syntaxin 7 adopts a closed conformation, whereas in vti1b and syntaxin 8, the N-terminal domains do not interact with the adjacent SNARE motifs. Accordingly, the rate of SNARE complex assembly is retarded about 7-fold when syntaxin 7 contains its N-terminal domain, whereas the N-terminal domains of vti1b and syntaxin 8 have no influence on assembly kinetics. We conclude that three-helix bundles represent a common fold for SNARE N-terminal domains, not restricted to the syntaxin family. However, they differ in their ability to adopt closed conformations and thus to regulate the assembly of SNARE complexes.  相似文献   

2.
Sets of SNARE proteins mediate membrane fusion by assembling into core complexes. Multiple SNAREs are thought to function in different intracellular trafficking steps but it is often unclear which of the SNAREs cooperate in individual fusion reactions. We report that syntaxin 7, syntaxin 8, vti1b and endobrevin/VAMP-8 form a complex that functions in the fusion of late endosomes. Antibodies specific for each protein coprecipitate the complex, inhibit homotypic fusion of late endosomes in vitro and retard delivery of endocytosed epidermal growth factor to lysosomes. The purified proteins form core complexes with biochemical and biophysical properties remarkably similar to the neuronal core complex, although each of the four proteins carries a transmembrane domain and three have independently folded N-terminal domains. Substitution experiments, sequence and structural comparisons revealed that each protein occupies a unique position in the complex, with syntaxin 7 corresponding to syntaxin 1, and vti1b and syntaxin 8 corresponding to the N- and C-terminal domains of SNAP-25, respectively. We conclude that the structure of core complexes and their molecular mechanism in membrane fusion is highly conserved between distant SNAREs.  相似文献   

3.
SNARE proteins are crucial for intracellular membrane fusion in all eukaryotes. These proteins assemble into tight complexes that connect membranes and may induce fusion. The crystal structure of the neuronal core complex is represented by an unusually long bundle of four alpha-helices connected by 16 layers of mostly hydrophobic amino acids. Here we report the 1.9 A resolution crystal structure of an endosomal SNARE core complex containing four SNAREs: syntaxin 7, syntaxin 8, vti1b and endobrevin/VAMP-8. Despite limited sequence homology, the helix alignment and the layer structure of the endosomal complex are remarkably similar to those of the neuronal complex. However, subtle variations are evident that characterize different SNARE subfamilies. We conclude that the structure of the SNARE core complex is an evolutionarily conserved hallmark of all SNARE complexes and is intimately associated with the general role of SNAREs in membrane fusion.  相似文献   

4.
Assembly of SNARE proteins into quaternary complexes is a critical step in membrane docking and fusion. Here, we have studied the influence of the transmembrane segments on formation of the late endosomal SNARE complex. The complex was assembled in vitro from full-length recombinant SNAREs and from mutants, where the transmembrane segments were either deleted or replaced by oligo-alanine sequences. We show that endobrevin, syntaxin 7, syntaxin 8, and vti1b readily form a complex. This complex forms a dimer as well as multimeric structures. Interestingly, the natural transmembrane segments accelerate the conversion of the quaternary complex to the dimeric form and are essential for multimerization. These in vitro results suggest that the transmembrane segments are responsible for supramolecular assembly of the endosomal SNARE complex.  相似文献   

5.
Assembly of SNARE proteins into quaternary complexes is a critical step in membrane docking and fusion. Here, we have studied the influence of the transmembrane segments on formation of the late endosomal SNARE complex. The complex was assembled in vitro from full-length recombinant SNAREs and from mutants, where the transmembrane segments were either deleted or replaced by oligo-alanine sequences. We show that endobrevin, syntaxin 7, syntaxin 8, and vti1b readily form a complex. This complex forms a dimer as well as multimeric structures. Interestingly, the natural transmembrane segments accelerate the conversion of the quaternary complex to the dimeric form and are essential for multimerization. These in vitro results suggest that the transmembrane segments are responsible for supramolecular assembly of the endosomal SNARE complex.  相似文献   

6.
The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein is a chloride channel localized at the apical plasma membrane of epithelial cells. We previously described that syntaxin 8, an endosomal SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor) protein, interacts with CFTR and regulates its trafficking to the plasma membrane and hence its channel activity. Syntaxin 8 belongs to the endosomal SNARE complex which also contains syntaxin 7, vti1b and VAMP8. Here, we report that these four endosomal SNARE proteins physically and functionally interact with CFTR. In LLC-PK1 cells transfected with CFTR and in Caco-2 cells endogenously expressing CFTR, we demonstrated that endosomal SNARE protein overexpression inhibits CFTR activity but not swelling- or calcium-activated iodide efflux, indicating a specific effect upon CFTR activity. Moreover, co-immunoprecipitation experiments in LLC-PK1-CFTR cells showed that CFTR and SNARE proteins belong to a same complex and pull-down assays showed that VAMP8 and vti1b preferentially interact with CFTR N-terminus tail. By cell surface biotinylation and immunofluorescence experiments, we evidenced that endosomal SNARE overexpression disturbs CFTR apical targeting. Finally, we found a colocalization of CFTR and endosomal SNARE proteins in Rab11-positive recycling endosomes, suggesting a new role for endosomal SNARE proteins in CFTR trafficking in epithelial cells.  相似文献   

7.
Syntaxin 8 has been shown to form the SNARE complex with syntaxin 7, vti1b and endobrevin. These have been shown to function as the machinery for the homotypic fusion of late endosomes. Recently, we showed that syntaxins 7 and 8 cycle through the plasma membrane, and that the di-leucine-based motifs in the cytoplasmic domain of syntaxins 7 and 8 respectively function in their endocytic and exocytic processes. However, we could not elucidate the mechanism by which syntaxin 8 cycles through the plasma membrane. In this study, we constructed several different syntaxin 8 molecules by mutating putative di-leucine-based motifs, and analyzed their intracellular localization and trafficking. We found a di-leucine-based motif in the cytoplasmic domain of syntaxin 8. It is similar to that of syntaxin 7, and functions in its endocytosis. These results suggest that in the cytoplasmic domain, syntaxin 8 has two functionally distinct di-leucine-based motifs that act independently in its endocytic and exocytic processes. This is the first report on two di-leucine-based motifs in the same molecule acting independently in distinct transport pathways.  相似文献   

8.
Assembly of soluble N-ethylmaleimide-sensitive fusion attachment protein receptor (SNARE) proteins between two opposing membranes is thought to be the key event that initiates membrane fusion. Many new SNARE proteins have recently been localized to distinct intracellular compartments, supporting the view that sets of specific SNAREs are specialized for distinct trafficking steps. We have now investigated whether other SNAREs can form complexes with components of the synaptic SNARE complex including synaptobrevin/VAMP 2, SNAP-25, and syntaxin 1. When the Q-SNAREs syntaxin 2, 3, and 4, and the R-SNARE endobrevin/VAMP 8 were used in various combinations, heat-resistant complexes were formed. Limited proteolysis revealed that these complexes contained a protease-resistant core similar to that of the synaptic complex. All complexes were disassembled by the ATPase N-ethylmaleimide-sensitive fusion protein and its cofactor alpha-SNAP. Circular dichroism spectroscopy showed that major conformational changes occur during assembly, which are associated with induction of structure from unstructured monomers. Furthermore, no preference for synaptobrevin was observed during the assembly of the synaptic complex when endobrevin/VAMP 8 was present in equal concentrations. We conclude that cognate and non-cognate SNARE complexes are very similar with respect to biophysical properties, assembly, and disassembly, suggesting that specificity of membrane fusion in intracellular membrane traffic is not due to intrinsic specificity of SNARE pairing.  相似文献   

9.
The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans‐Golgi network, partially overlapping with syntaxin‐6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca2+‐channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin‐2 content. In contrast, release kinetics and Ca2+‐sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long‐term re‐expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short‐term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca2+‐channel trafficking, but is dispensable for transmitter release.  相似文献   

10.
SNARE proteins mediate membrane fusion in the secretory pathway of eukaryotic cells. Genetic deletion and siRNA-based knockdown have been instrumental in assigning given SNAREs to defined intracellular transport steps. However, SNARE depletion occasionally results in barely detectable phenotypes. To understand how cells cope with SNARE loss, we have knocked down several SNAREs functioning in early endosome fusion. Surprisingly, knockdown of syntaxin 13, syntaxin 6 and vti1a, alone or in combinations, did not result in measurable changes of endosomal trafficking or fusion. We found that the residual SNARE levels (typically ∼10%) were sufficient for a substantial amount of SNARE–SNARE interactions. Conversely, in wild-type cells, most SNARE molecules were concentrated in clusters, constituting a spare pool not readily available for interactions. Additionally, the knockdown organelles exhibited enhanced docking. We conclude that SNAREs are expressed at much higher levels than needed for maintenance of organelle fusion, and that loss of SNAREs is compensated for by the co-regulation of the docking machinery.  相似文献   

11.
SNARE protein trafficking in polarized MDCK cells   总被引:3,自引:0,他引:3  
A key feature of polarized epithelial cells is the ability to maintain the specific biochemical composition of the apical and basolateral plasma membrane domains. This polarity is generated and maintained by the continuous sorting of apical and basolateral components in the secretory and endocytic pathways. Soluble N-ethyl maleimide-sensitive factor attachment protein receptors (SNARE) proteins of vesicle-associated membrane protein (VAMP) and syntaxin families have been suggested to play a role in the biosynthetic transport to the apical and basolateral plasma membranes of polarized cells, where they likely mediate membrane fusion. To investigate the involvement of SNARE proteins in membrane trafficking to the apical and basolateral plasma membrane in the endocytic pathway we have monitored the recycling of various VAMP and syntaxin molecules between intracellular compartments and the two plasma membrane domains in Madin–Darby canine kidney (MDCK) cells. Here we show that VAMP8/endobrevin cycles through the apical but not through the basolateral plasma membrane. Furthermore, we found that VAMP8 localizes to apical endosomal membranes in nephric tubule epithelium and in MDCK cells. This asymmetry in localization and cycling behavior suggests that VAMP8/endobrevin may play a role in apical endosomal trafficking in polarized epithelium cells.  相似文献   

12.
Dietary long chain fatty acids are absorbed in the intestine, esterified to triacylglycerol, and packaged in the unique lipoprotein of the intestine, the chylomicron. The rate-limiting step in the transit of chylomicrons through the enterocyte is the exit of chylomicrons from the endoplasmic reticulum in prechylomicron transport vesicles (PCTV) that transport chylomicrons to the cis-Golgi. Because chylomicrons are 250 nm in average diameter and lipid absorption is intermittent, we postulated that a unique SNARE pairing would be utilized to fuse PCTV with their target membrane, cis-Golgi. PCTV loaded with [(3)H]triacylglycerol were incubated with cis-Golgi and were separated from the Golgi by a sucrose step gradient. PCTV-chylomicrons acquire apolipoprotein-AI (apoAI) only after fusion with the Golgi. PCTV became isodense with Golgi upon incubation and were considered fused when their cargo chylomicrons acquired apoAI but docked when they did not. PCTV, docked with cis-Golgi, were solubilized in 2% Triton X-100, and proteins were immunoprecipitated using VAMP7 or rBet1 antibodies. In both cases, a 112-kDa complex was identified in nonboiled samples that dissociated upon boiling. The constituents of the complex were VAMP7, syntaxin 5, vti1a, and rBet1. Antibodies to each SNARE component significantly inhibited fusion of PCTV with cis-Golgi. Membrin, Sec22b, and Ykt6 were not found in the 112-kDa complex. We conclude that the PCTV-cis-Golgi SNARE complex is composed of VAMP7, syntaxin 5, Bet1, and vti1a.  相似文献   

13.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.  相似文献   

14.
Clathrin-coated vesicles (CCVs) mediate transport between the plasma membrane, endosomes and the trans Golgi network. Using comparative proteomics, we have identified coated-vesicle-associated kinase of 104 kDa (CVAK104) as a candidate accessory protein for CCV-mediated trafficking. Here, we demonstrate that the protein colocalizes with clathrin and adaptor protein-1 (AP-1), and that it is associated with a transferrin-positive endosomal compartment. Consistent with these observations, clathrin as well as the cargo adaptors AP-1 and epsinR can be coimmunoprecipitated with CVAK104. Small interfering RNA (siRNA) knockdown of CVAK104 in HeLa cells results in selective loss of the SNARE proteins syntaxin 8 and vti1b from CCVs. Morpholino-mediated knockdown of CVAK104 in Xenopus tropicalis causes severe developmental defects, including a bent body axis and ventral oedema. Thus, CVAK104 is an evolutionarily conserved protein involved in SNARE sorting that is essential for normal embryonic development.  相似文献   

15.
Pombo I  Rivera J  Blank U 《FEBS letters》2003,550(1-3):144-148
Exocytosis of mast cell granules requires a vesicular- and plasma membrane-associated fusion machinery. We examined the distribution of SNARE membrane fusion and Munc18 accessory proteins in lipid rafts of RBL mast cells. SNAREs were found either excluded (syntaxin2), equally distributed between raft and non-raft fractions (syntaxin4, VAMP-8, VAMP-2), or selectively enriched in rafts (syntaxin3, SNAP-23). Syntaxin4-binding Munc18-3 was absent, whereas small amounts of the syntaxin3-interacting partner Munc18-2 consistently distributed into rafts. Cognate SNARE complexes of syntaxin3 with SNAP-23 and VAMP-8 were enriched in rafts, whereas Munc18-2/syntaxin3 complexes were excluded. This demonstrates a spatial separation between these two types of complexes and suggests that Munc18-2 acts in a step different from SNARE complex formation and fusion.  相似文献   

16.
Regulated exocytosis in neurons and neuroendocrine cells requires the formation of a stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of synaptobrevin-2/vesicle-associated membrane protein 2, synaptosome-associated protein of 25 kDa (SNAP-25), and syntaxin 1. This complex is subsequently disassembled by the concerted action of alpha-SNAP and the ATPases associated with different cellular activities-ATPase N-ethylmaleimide-sensitive factor (NSF). We report that NSF inhibition causes accumulation of alpha-SNAP in clusters on plasma membranes. Clustering is mediated by the binding of alpha-SNAP to uncomplexed syntaxin, because cleavage of syntaxin with botulinum neurotoxin C1 or competition by using antibodies against syntaxin SNARE motif abolishes clustering. Binding of alpha-SNAP potently inhibits Ca(2+)-dependent exocytosis of secretory granules and SNARE-mediated liposome fusion. Membrane clustering and inhibition of both exocytosis and liposome fusion are counteracted by NSF but not when an alpha-SNAP mutant defective in NSF activation is used. We conclude that alpha-SNAP inhibits exocytosis by binding to the syntaxin SNARE motif and in turn prevents SNARE assembly, revealing an unexpected site of action for alpha-SNAP in the SNARE cycle that drives exocytotic membrane fusion.  相似文献   

17.
This review focuses on the product of the pallidin (Pldn) gene, one of a number of genes that in mice are associated with pigmentation defects and platelet dense granule deficiency. A similar combination of defects is also observed in patients suffering from Hermansky-Pudlak (HPS) and Chediak-Higashi (CHS) syndromes. Pldn encodes a novel, approximately 20-kDa protein that is expressed ubiquitously in mammalian tissues. The pallidin protein was found to bind to syntaxin 13, a member of the syntaxin family of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). As SNARE proteins mediate fusion of intracellular membranes, pallidin may play a role in membrane fusion events required for melanosome biogenesis.  相似文献   

18.
Lipid rafts are membrane microdomains rich in cholesterol and glycosphingolipids that have been implicated in the regulation of intracellular protein trafficking. During exocytosis, a class of proteins termed SNAREs mediate secretory granule-plasma membrane fusion. To investigate the role of lipid rafts in secretory granule exocytosis, we examined the raft association of SNARE proteins and SNARE complexes in rat basophilic leukemia (RBL) mast cells. The SNARE protein SNAP-23 co-localized with a lipid raft marker and was present in detergent-insoluble lipid raft microdomains in RBL cells. By contrast, only small amounts (<20%) of the plasma membrane SNARE syntaxin 4 or the granule-associated SNARE vesicle-associated membrane protein (VAMP)-2 were present in these microdomains. Despite this, essentially all syntaxin 4 and most of VAMP-2 in these rafts were present in SNARE complexes containing SNAP-23, while essentially none of these complexes were present in nonraft membranes. Whereas SNAP-23 is membrane anchored by palmitoylation, the association of the transmembrane protein syntaxin 4 with lipid rafts was because of its binding to SNAP-23. After stimulating mast cells exocytosis, the amount of syntaxin 4 and VAMP-2 present in rafts increased twofold, and these proteins were now present in raft-associated phospho-SNAP-23/syntaxin 4/VAMP-2 complexes, revealing differential association of SNARE fusion complexes during the process of regulated exocytosis.  相似文献   

19.
Proteins of the Sec1 family have been shown to interact with target-membrane t-SNAREs that are homologous to the neuronal protein syntaxin. We demonstrate that yeast Sec1p coprecipitates not only the syntaxin homologue Ssop, but also the other two exocytic SNAREs (Sec9p and Sncp) in amounts and in proportions characteristic of SNARE complexes in yeast lysates. The interaction between Sec1p and Ssop is limited by the abundance of SNARE complexes present in sec mutants that are defective in either SNARE complex assembly or disassembly. Furthermore, the localization of green fluorescent protein (GFP)-tagged Sec1p coincides with sites of vesicle docking and fusion where SNARE complexes are believed to assemble and function. The proposal that SNARE complexes act as receptors for Sec1p is supported by the mislocalization of GFP-Sec1p in a mutant defective for SNARE complex assembly and by the robust localization of GFP-Sec1p in a mutant that fails to disassemble SNARE complexes. The results presented here place yeast Sec1p at the core of the exocytic fusion machinery, bound to SNARE complexes and localized to sites of secretion.  相似文献   

20.
The endoplasmic reticulum/Golgi SNARE rbet1 cycles between the endoplasmic reticulum and Golgi and is essential for cargo transport in the secretory pathway. Although the quaternary SNARE complex containing rbet1 is known to function in membrane fusion, the structural role of rbet1 is unclear. Furthermore, the structural determinants for rbet1 targeting and its cyclical itinerary have not been investigated. We utilized protein interaction assays to demonstrate that the rbet1 SNARE motif plays a structural role similar to the carboxyl-terminal helix of SNAP-25 in the synaptic SNARE complex and demonstrated the importance to SNARE complex assembly of a conserved salt bridge between rbet1 and sec22b. We also examined the potential role of the rbet1 SNARE motif and SNARE interactions in rbet1 localization and dynamics. We found that, in contrast to what has been observed for syntaxin 5, the rbet1 SNARE motif was essential for proper targeting. To test whether SNARE interactions were important for the targeting function of the SNARE motif, we used charge repulsion mutations at the conserved salt bridge position that rendered rbet1 defective for binary, ternary, and quaternary SNARE interactions. We found that heteromeric SNARE interactions are not required at any step in rbet1 targeting or dynamics. Furthermore, the heteromeric state of the SNARE motif does not influence its interaction with the COPI coat or efficient recruitment onto transport vesicles. We conclude that protein targeting is a completely independent function of the rbet1 SNARE motif, which is capable of distinct classes of protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号