首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A S Verkman 《Biochemistry》1987,26(13):4050-4056
The physicochemical mechanism for merocyanine 540 (M540) binding to unilamellar phosphatidylcholine (PC) vesicles was examined by steady-state and dynamic fluorescence and fluorescence stopped-flow methods. At 530-nm excitation, aqueous M540 has an emission peak at 565 nm, which red shifts to 580 nm with formation of membrane-bound monomers (M); bound dimers (D) are nonfluorescent. Equilibrium fluorescence titrations show that 50% of total M540 partitions into the membrane to form D at [M540]/[PC] (Rm/p)_approximately 0.6. M and D concentrations are equal at Rm/p approximately 0.05. For Rm/p less than 0.1, M540 has a single fluorescence lifetime (tau), which decreases with Rm/p [tau-1 (ns-1) = 0.48 + 3.3Rm/p], indicating a rapid collisional rate between M to form D. Dynamic depolarization studies show that hindered rotation of M (r infinity = 0.13 at Rm/p = 0.006) becomes more rapid (rotational rate 0.2-1.9 ns-1) with increasing Rm/p (0.006-0.075). The efficiencies of energy transfer between n-(9-anthroyloxy) fatty acid probes (n = 2, 6, 9, 12, 16) and bound M540 suggest that M is oriented parallel to the phospholipids near the membrane surface; studies of efficiencies of n-AF quenching by D are consistent with an orientation of D perpendicular to the phospholipids. In stopped-flow fluorescence measurements in which M540 is mixed with PC vesicles, there is a rapid (1 ms) followed by a slower (10-50 ms) concentration-dependent fluorescence increase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid.  相似文献   

3.
Kinetics and mechanism of bilirubin binding to human serum albumin   总被引:3,自引:0,他引:3  
The kinetics of bilirubin binding to human serum albumin at pH 7.40, 4 degrees C, was studied by monitoring changes in bilirubin absorbance. The time course of the absorbance change at 380 nm was complex: at least three kinetic events were detected including the bimolecular association (k1 = 3.8 +/- 2.0 X 10(7) M-1 S-1) and two relaxation steps (52 = 40.2 +/- 9.4 s-1 and k3 = 3.8 +/- 0.5 s-1). The presence of the two slow relaxations was confirmed under pseudo-first order conditions with excess albumin. Curve-fitting procedures allowed the assignment of absorption coefficients to the intermediate species. When the bilirubin-albumin binding kinetics was observed at 420 nm, only the two relaxations were seen; apparently the second order association step was isosbestic at this wavelength. The rate of albumin-bound bilirubin dissociation was measured by mixing the pre-equilibrated human albumin-bilirubin complex with bovine albumin. The rate constant for bilirubin dissociation measured at 485 nm was k-3 = 0.01 s-1 at 4 degrees C. A minimum value of the equilibrium constant for bilirubin binding to human albumin determined from the ratio k1/k-3 is therefore approximately 4 X 10(9) M-1.  相似文献   

4.
J Bramhall 《Biochemistry》1986,25(11):3479-3486
There are distinct differences in the molecular packing of phospholipid molecules in the inner and outer membrane monolayers of small lipid vesicles; a small radius of curvature imparts an asymmetry to the interface between these two monolayers. I have used an amphiphilic fluorescent probe, N-[5-(dimethylamino)naphthalenyl-1-sulfonyl]glycine (dansylglycine), to determine if this asymmetry in molecular packing leads to the existence of different environments for fluorescent probes resident in the membrane. Dansylglycine is highly sensitive to the dielectric constant of its environment, and the fluorescence signal from membrane-bound dye is distinct from that in the aqueous medium. When dansylglycine is first mixed with vesicles, it rapidly partitions into the outer monolayer; the subsequent movement of dye into the inner monolayer is much slower. Because of the time lag between the initial partitioning and the subsequent translocation, it is possible to measure the emission spectrum from membrane-bound dye before and after translocation, thus distinguishing the two potential environments for dansylglycine molecules. In the outer membrane monolayer of small dipalmitoylphosphatidylcholine vesicles, dye fluorescence emission is maximal at 530 nm, corresponding to a dielectric constant of 7 for the medium surrounding the fluorophore. For dye in the inner monolayer, emission is maximal at 519 nm, corresponding to a dielectric constant of 4.7. The results suggest that water molecules are excluded more efficiently from the dye binding sites of the inner membrane monolayer than they are from those of the outer monolayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1-[2-Amino-5-(6-carboxyindol-2-yl)phenoxyl]-2-(2'- amino-5'-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid (indo-1) and 2-[2-(bis(carboxymethyl)amino-5-methylphenoxy) methyl]-6- methyl-8-[bis-(carboxymethyl)amino]quinoline (quin-2) are sensitive, spectral indicators for Zn2+. Additions of subsaturating Zn2+ to 10-80 microM indo-1 or quin-2 at pH 7.0 produce uv difference spectra with isosbestic wavelengths at 342 and 282 nm or at 342, 317, and 252 nm, respectively. Formation of 1:1 Zn2+:indicator complexes at pH 7.0 and 20 degrees C in the absence (presence) of 100 mM KCl gives delta epsilon max = -2.4 +/- 0.2 X 10(4) M-1 cm-1 at 367 nm (-2.1 +/- 0.2 X 10(4) M-1 cm-1 at 365 nm) for indo-1 and delta epsilon max = -2.7 +/- 0.1 X 10(4) M-1 cm-1 at 266 nm (-2.6 +/- 0.1 X 10(4) M-1 cm-1 at 265 nm) for quin-2. Competition experiments at pH 7.0 and 20 degrees C with indo-1 and quin-2 and also 4-(2-pyridylazo)resorcinol (PAR) as the second chelator in the absence (presence) of 100 mM KCl yield apparent affinity constants: K'A = 2.5 +/- 1.0 X 10(10) M-1 (6.2 +/- 0.5 X 10(9) M-1) for indo-1 binding Zn2+ and K'A = 9.4 +/- 3.3 X 10(11) M-1 (2.7 +/- 0.1 X 10(11) M-1) for quin-2 binding Zn2+. The above constants provide the basis for rapid steady-state spectrophotometric determinations of the affinity of a protein for Zn2+ with K'A approximately 10(10) - 10(13) M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The reaction of human hemoglobin with carbon monoxide has been investigated near the equilibrium isosbestic wavelength (i.e. 426 nm). As previously reported by others [Gray, R.D. & Gibson, Q. H. (1971) J. Biol. Chem. 246, 5176-5178], in the presence of 0.1 M phosphate pH 7.0 a rise-and-fall kinetic pattern can be observed at this wavelength, which indicates the presence of at least one spectroscopically detectable intermediate species. In this paper we demonstrate that (a) the intermediate species is thermodynamically stable; (b) both phases refer to bimolecular processes; (c) only the initial fast phase is observed when deoxyhemoglobin is reacted with substoichiometric amounts of CO (i.e. final [CO]/[heme] less than or equal to 0.5); (d) only the second slow phase is observed when hemoglobin that is partially saturated with CO (Y less than or equal to 0.5) is reacted with saturating CO concentrations; (e) the CO dissociation rate constant measured on the intermediate formed after a partial CO saturation at a final Y approximately 0.4 has a value similar to that observed starting from the fully liganded form. These results can be accounted for by a two-state allosteric model [Monod, J., Wyman, J. & Changeux, J.-P. (1965) J. Mol. Biol. 12, 88-118] under the assumption that either (a) 426 nm is an isosbestic wavelength for the T0-R spectral changes but not for the T0-T liganded reaction; or (b) a functional heterogeneity of the two types of subunits is present in the T state and at this wavelength this feature is spectroscopically detectable.  相似文献   

7.
Azure B is the most important Romanowsky dye. In combination with eosin Y it produces the well known Romanowsky-Giemsa staining pattern on the cell. Usually commercial azure B is strongly contaminated. We prepared a sample of azure B-BF4 which was analytically pure and had no coloured impurities. The substance was used to redetermine the molar extinction coefficient epsilon (v)M of monomeric azur B in alcoholic solution. In the maximum of the long wavelength absorption at v = 15.61 kK (lambda = 641 nm) the absorptivity is epsilon (15.61)M = (9.40 +/- 0.15) x 10(4)M-1 cm-1. This extinction coefficient may be used for standardization of dye samples. In aqeuous solution azur B forms dimers and even higher polymers with increasing concentration. The dissociation constant of the dimers, K = 2,2 x 10(-4)M (293 K), and the absorption spectra of pure monomers and dimers in water have been calculated from the concentration dependence of the spectra using an iterative procedure. The molar extinction coefficient of the monomers at 15.47 kK (646 nm) is epsilon (15.47)M = 7.4 x 10(4)M-1 cm-1. The dimers have two long wavelength absorption bands at 14.60 and 16.80 kK (685 and 595 nm) with very different intensities 2 x 10(4) and 13.5 x 10(4)M-1 cm-1. The spectrum of the dimers in aqueous solution is in agreement with theoretical considerations of F?rster (1946) and Levinson et al. (1957). It agrees with an antiparallel orientation of the molecules in the dimers. It may be that dimers bound to a substrate in the cell have another geometry than dimers in solution. In this case the weak long wavelength absorption of the dimers can increase.  相似文献   

8.
The voltage sensitivity of the fluorescent styrylpyridinium dye RH421 has been investigated in dimyristoylphosphatidylcholine vesicles by inducing an intramembrane electric field through the binding of the hydrophobic ion tetraphenylborate (TPB). To assess the probability of electrochromic and solvatochromic mechanisms for the dye response, the ground-state dipole moment of the dye in chloroform solution was determined from dielectric constant measurements to be 12 (+/- 1) Debye, and the change in dipole moment upon excitation was calculated from measurements of the Stokes shift in solvents of varying polarity to be 25 (+/- 11) Debye. As well as causing absorbance and fluorescence changes of membrane-bound dye, the TPB-induced electrical field was found to reduce significantly the pKa of the dye. The pH at which experiments are carried out is, thus, an important factor in determining the amplitude of the voltage-induced absorbance and fluorescence changes. The observed absorbance changes induced by the field are inconsistent with a pure electrochromic mechanism. A reorientation/solvatochromic mechanism, whereby the electrical field reorients the dye molecules so that they experience a change in polarity of their lipid environment is likely to make a significant contribution to both the spectral changes and to the field effect on the acid-base properties of the dye.  相似文献   

9.
The reponses of oxonol dyes to single and multiple single turnovers of the photosynthetic apparatus of photosynthetic bacteria have been studied, and compared with the responses of the endogenous carotenoid pigments. The absorbance changes of the oxonols can be conveniently measured at 587 nm, because this is an isosbestic point in the 'light-minus-dark' difference spectrum of the chromatophores. The oxonols appear to respond to the light-induced 'energization' by shifting their absorption maxima. In the presence of K+, valinomycin abolished and nigericin enhanced such shifts, suggesting that the dyes, respond to the light-induced membrane potential. Since the dyes are anions at neutral pH values, they probably distribute across the membrane in accordance with the potential, which is positive inside the chromatophores. The accumulation of dye, which is indicated by a decrease in the carotenoid bandshift, poises the dye-membrane equilibrium in favor of increased dye binding and this might be the cause of the spectral shift. The dye response has an apparent second-order rate constant of approx. 2 . 10(6) M-1 . s-1 and so is always slower than the carotenoid bandshift. Thus the dyes cannot be used to monitor membrane potential on submillisecond timescales. Nevertheless, on a timescale of seconds the logarithm of the absorbance change at 587 nm is linear with respect to the membrane potential calibrated with the carotenoid bandshift. This suggests that under appropriate conditions the dyes can be used with confidence as indicators of membrane potential in energy-transducing membranes that do not possess intrinsic probes of potential.  相似文献   

10.
In an effort to increase our understanding of the molecular rearrangements that occur during lipid bilayer fusion, we have used different fluorescent probes to characterize the lipid rearrangements associated with poly(ethylene glycol) (PEG)-mediated fusion of DOPC:DL(18:3)PC (85:15) small, unilamellar vesicles (SUVs). Unlike in our previous studies of fusion kinetics [Lee, J., and Lentz, B. R., Biochemistry 36, 6251-6259], these vesicles have mean diameters of 20 nm compared to 45 nm. Surprisingly, we found significant inter-vesicle lipid mixing at 5 wt % PEG, well below the PEG concentration required (17.5 wt %) for vesicles fusion. Lipid movement rate between bilayers (or inter-leaflet movement) increased abruptly at 10 wt % PEG, and the rate of lipid mixing increased thereafter with increasing amounts of PEG. The characteristic time of lipid mixing between outer leaflets (tau approximately equal to 24 s) was comparable to that observed at and above PEG concentrations needed to induce fusion (17.5 wt %) of either 20 or 45 nm vesicles. We also found that slower lipid mixing (tau approximately equal to 267 s) between fusing vesicles occurred on the same time scale or slightly faster than vesicle contents mixing (tau approximately equal to 351 s). In addition, our measurements showed that lipids redistributed across the bilayer on a time scale just slightly faster than pore formation (tau approximately equal to 217 s). This is the first demonstration of trans-bilayer movement of lipids during fusion. We also found that water was excluded from the bilayer (tau approximately equal to 475 s) during product maturation. These observations suggest that fusion in smaller vesicles (approximately 20 nm) proceeds via a multistep mechanism similar to that we reported for somewhat larger vesicles, except that two intermediates are no longer clearly resolved.  相似文献   

11.
T Stokke  H B Steen 《Cytometry》1986,7(3):227-234
The binding of Hoechst 33258 to rat thymocytes, human lymphocytes, and NHIK 3025 tissue culture cells was studied by measuring the fluorescence and light scattering of the cells as functions of dye concentration using flow cytometry. The results indicated that there were two different modes of binding of Hoechst 33258 to chromatin in situ at physiological pH. Type 1 binding, which dominated at total dye/phosphate ratios below 0.1 (0.15, M), was characterized by a binding constant of the order 10(7) M-1 and fluorescence with high quantum yield. Further binding of the dye resulted in a reduced blue/green fluorescence ratio, indicating that secondary sites were occupied. Binding at secondary sites above a certain density (0.1 less than or equal to bound dye/phosphate less than or equal to 0.2) induced strong quenching of fluorescence and precipitation of chromatin. Precipitation was quantitated by measuring the large-angle (greater than or equal to 15 degrees) light scattering of the cells above 400 nm, i.e., outside the Hoechst 33258/DNA absorption spectrum, as a function of dye concentration. In contrast, the light scattering at 365 nm, i.e., within the absorption spectrum of Hoechst 33258/DNA, was independent of the total dye/phosphate ratio. The coefficient of variation of the light-scattering (greater than or equal to 400 nm) histograms decreased with Hoechst 33258 concentration. Type 2 binding to histone-depleted chromatin was cooperative (Hill-coefficient approximately 2) and the apparent binding constant was 2-3 X 10(5) M-1 as determined from quenching and precipitation data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Second harmonic generation (SHG) from membrane-bound chromophores can be used to image membrane potential in neurons. We investigate the biophysical mechanism responsible for the SHG voltage sensitivity of the styryl dye FM 4-64 in pyramidal neurons from mouse neocortical slices. SHG signals are exquisitely sensitive to the polarization of the incident laser light. Using this polarization sensitivity in two complementary approaches, we estimate a approximately 36 degrees tilt angle of the chromophore to the membrane normal. Changes in membrane potential do not affect the polarization of the SHG signal. The voltage response of FM 4-64 is faster than 1 ms and does not reverse sign when imaged at either side of its absorption peak. We conclude that FM 4-64 senses membrane potential through an electro-optic mechanism, without significant chromophore membrane reorientation, redistribution, or spectral shift.  相似文献   

13.
Large unilamellar vesicles (LUVs) composed of 1-[2H31]palmitoyl-2-oleoyl phosphatidylcholine (POPC-d31), with diameters of approximately 117 +/- 31 and 180 +/- 44 nm, were prepared by extrusion through polycarbonate filters with pore sizes of 0.1 and 0.2 microns, respectively. The 2H nuclear magnetic resonance (NMR) spectra obtained at 21 degrees C contain two components: a broad component (approximately 17 kHz linewidth) corresponding to the methylene groups and a narrower component originating from the methyl groups. Spectra with increasing powder pattern characteristics were obtained by reducing the rate of phospholipid reorientations by addition of glycerol (to increase the solvent viscosity) and by lowering the temperature. Full powder spectra, characteristic of liquid-crystalline bilayers, were obtained for both LUV samples at 0 degrees C in the presence of 50 wt% glycerol. Individual quadrupolar splittings were not resolved in these spectra, due to broader linewidths in the LUVs, which have significantly shorter values for spin-spin relaxation time T2 measured from the decay of the quadrupolar echo (90 microseconds) than the multilmellar vesicles (MLVs; 540 microseconds). Smoothed order parameter profiles (OPPs) were obtained for these samples by integration of the dePaked spectra. The OPPs were very similar to the OPP of POPC-d31 MLVs in 50 wt% glycerol at the same temperature, indicating that orientational order in MLVs and LUVs with a diameter of > or = 100 nm is essentially the same. The presence of 80 wt% glycerol was found to have a disordering effect on the vesicles.  相似文献   

14.
Vesicle-micelle transition structures of egg phosphatidylcholine (PC) and octyl glucoside (OG) mixtures were observed in the vitrified hydrated state by cryo-transmission electron microscopy (cryo-TEM) and correlated with the macroscopic and molecular changes previously associated with micellization monitored by 90 degrees light scattering and resonance energy transfer between fluorescent lipid probes. Several distinct structural changes occurred as OG was added to the PC vesicles. First, the average vesicle size decreased from 160 nm to less than 66 nm with no apparent change or decrease in optical density (OD). Then, associated with a small rise in OD, samples with open vesicles were observed coexisting with pieces of lamellae and long cylindrical micelles; more micelles were seen at higher [OG]. This mixture of vesicles and cylindrical micelles occurred in the region of the phase diagram previously attributed to vesicle opening, and possibly vesicle size increase. At higher [OG], small spheroidal micelles coexisting with cylindrical micelles correlated with a decrease in OD and changes in the fluorescence signal. At high [OG] when the solution appeared clear, spheroidal micelles were the dominant structure. By using cryo-TEM, a technique which preserves the original microstructure of fluid systems and provides direct images at 1 nm resolution, we have elucidated the vesicle-micelle transition and identified intermediates not known previously in the PC/OG system.  相似文献   

15.
Absorbance signals were recorded from voltage-clamped single muscle fibers stained with the nonpenetrating potentiometric dyes NK2367 and WW375 and illuminated with quasimonochromatic light from 560 to 800 nm, linearly polarized either parallel (0 degree) or perpendicular (90 degrees) to the fiber long axis. The signals from both dyes depend strongly on the incident polarization. At any wavelength and/or polarization condition, the total absorbance signal is a superposition of the same two signal components previously identified with unpolarized light (Heiny, J. A., and J. Vergara, 1982, J. Gen. Physiol., 80:203)--namely, a fast step signal from the voltage-clamped surface membrane and a signal reflecting the slower T-system potential changes. The 0 degree and 90 degrees spectra of both membranes have similar positive and negative absorbance peaks (720 and 670 nm, respectively, for dye NK2367; 740 and 700 nm for dye WW375); in addition, they have the same dichroic maxima (670 for NK2367; 700 for WW375). However, for the surface membrane, the 0 degrees spectra are everywhere more positive than the 90 degrees spectra, whereas the reverse is true for the T-system, which results in a dichroism of opposite sign for the two membranes. These spectral characteristics were analyzed using a general model for the potential-dependent response of an absorbing dye (Tasaki, I., and A. Warashina, 1976, Photochem. Photobiol., 24:191), which takes into account both the dye response and the membrane geometries. They are consistent with the proposal that the dye responds via a common mechanism in both membranes that consists of a dye reorientation and a change in the absorption maxima.  相似文献   

16.
We investigated the binding of azure B to DNA (calf thymus) over a wide range of concentrations of the dye (CF) and the nucleic acid (CN) using absorption spectroscopy [CF and CN represent the total concentrations of the ye (F) and the mononucleotide units (N) of the DNA, respectively]. The binding isotherms of the dye to DNA in aqueous solutions were determined. In addition, we analysed the composition of insoluble DNA/azure B precipitates that are formed in presence of an excess of azure B. These precipitates are of particular interest, because Giemsa staining is usually performed using high dye concentrations. Azure B easily forms dimers in aqueous solutions. When determining the binding isotherms, the equilibrium between free monomers and dimers must be taken into account. Therefore, we determined the dimerisation constant (Kd) of azure B from the concentration dependency of its absorption spectra in water at the standard temperature T = 298 K (25 degrees C), Kd = 6.5 X 10(3) M-1 (experimental conditions: tris buffer, pH 7.2; concentration of Na ions, CNa = 0.002 M). As the CNa value increases, the dimerisation constant rises rapidly. When the azure B concentration is very low and there is an excess of DNA, ordinary Scatchard and Langmuir isotherms are observed. Monomer dye cations are bound to DNA, these cations being in equilibrium with free monomers in the solution. In order to obtain the Scatchard binding constant (Ks) and the binding parameter (n) spectroscopically, it is necessary to determine the extinction coefficient (epsilon Fb) of the monomer bound (b) dye molecules (F) at one analytical wave number (upsilon a). The three constants can be determined simultaneously using an iterative technique that combines Scatchard isotherms and the Benesi-Hildebrand extrapolation, CN----infinity. We obtained Ks = 1.8 X 10(5) M-1 and n = 0.18 (25 degrees C; tris buffer, pH 7.2; CNa = 0.002 M). At very low dye (CF) and competitor (CNa) concentrations, only 18% of the anionic binding sites of the DNA are capable of binding the dye cations. With increasing CNa values the concentration of bound azure B cations decreases rapidly. The Na cations displace the bound dye cations and act as a competitor. The Ks value also greatly depends on the competitor concentration (CNa).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Binding of the lipophilic probe merocyanine 540 to artificial bilayers was assessed by measuring the enhancement of fluorescence which results when dye enters the hydrophobic environment of the membrane. Titration of a constant amount of dye with increasing amounts of vesicles revealed that much more dye binds to multilamellar and 1000-Å, unilamellar vesicles which are in the fluid-phase state than to comparable vesicles which are in the gel-phase state. Incorporation of cholesterol into fluid-phase vesicles at levels of greater than 20 mol% reduced dye binding, whereas cholesterol had no effect at any concentration when incorporated into gel-phase vesicles. Sonicated 200–300-Å unilamellar gel-phase vesicles, which because of their reduced radius of curvature resemble fluid-phase bilayers in their more widely spaced exterior leaflet lipids, bound more dye than 1000-Å unilameilar gel-phase vesicles constructed from the same lipid. These results suggest that merocyanine 540 is able to sense the degree of lipid packing of bilayers and inserts preferentially into bilayers whose lipids are more widely spaced.  相似文献   

18.
Action spectra for chromatic adaptation in Fremyella diplosiphon Drouet have been determined using techniques previously described. Action maxima are at 540 nm, with a half-band width of 80 nm, for induction of phycoerythrin synthesis (green action) and at 650 nm, with a half-band width of 90 nm, for reversal of induction of phycoerythrin synthesis (red action). The red-action spectrum includes a secondary action band centered at ca. 360 nm. Red and green action overlap from 570 to 590 nm with an isosbestic point in the vicinity of 580 nm. Shoulders are present at 520 and 630 nm. Red light is more active than green light. The 540:650-nm quantum effectiveness ratio is 1:7. There is relatively little action of either kind in the blue. The 387:540 nm and 460:650-nm quantum effectiveness ratios are zero. These results contrast strongly with previous determinations in the same organism, with major activity indicated in the blue; they are consistent with the control of photomorphogenesis in the Cyanophyta by a master pigment, analogous to phytochrome.Abbreviations APC allophycocyanin - PC physocyanin - PE phycoerythrin  相似文献   

19.
We have characterized the quenching of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine by Co2+ in egg phosphatidylcholine (PC) lipid bilayer vesicles. The quenching constant obtained is 59 M-1. We demonstrate one use of this fluorescence quenching technique by measuring intrinsic and X537A-mediated transmembrane Co2+ fluxes in large unilamellar PC vesicles. The intrinsic rate constant for Co2+ flux we measure is 3 X 10(-6) S-1. We confirm that the neutral Co approximately (X537A)2 complex is the main component of the X537A-mediated cobalt flux. Since this method measures the concentration of Co2+ at the site of the fluorophore, it is generally applicable to the measurement of paramagnetic ion concentrations in the region of the membrane/water interface.  相似文献   

20.
The spin-lattice relaxation time of the 31P nucleus in the phosphate group of egg yolk phosphatidylcholine multilamellar dispersions has been investigated at four resonant frequencies (38.9, 81.0, 108.9, and 145.7 MHz) in the temperature range from -30 degrees to 60 degrees C. The observed frequency dependence of the relaxation indicates that both dipolar relaxation and relaxation due to anisotropic chemical shielding are significant mechanisms. The experimental data have thus been modeled assuming both mechanisms and the analysis has allowed the contribution of each to the relaxation to be determined along with the correlation time for the molecular reorientation as a function of temperature. Dipolar relaxation was found to dominate at low nuclear magnetic resonance frequencies while at high frequencies the anisotropic chemical shift dominates. The correlation time of the phosphate group is on the order of 10(-9) s at 60 degrees C and increases to approximately 10(-7) s at -30 degrees C. It is observed that the freezing of the buffer which occurs at approximately -8 degrees C has a significant effect on the phosphate group reorientation. This effect of the freezing is to change the activation energy for the phosphate group reorientation from 16.9 KJ/mol above -8 degrees C to 32.5 KJ/mol below -8 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号