首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cyclic AMP (cAMP) is the major intracellular second messenger of thyrotropin (TSH) action on thyroid cells. It stimulates growth as well as the function and differentiation of cultured thyrocytes. The adenosine A2 receptor, which activates adenylyl cyclase via coupling to the stimulating G protein (Gs), has been shown to promote constitutive activation of the cAMP cascade when transfected into various cell types. In order to test whether the A2 receptor was able to function similarly in vivo and to investigate the possible consequences of permanent adenylyl cyclase activation in thyroid cells, lines of transgenic mice were generated expressing the canine A2 adenosine receptor under control of the bovine thyroglobulin gene promoter. Thyroid-specific expression of the A2 adenosine receptor transgene promoted gland hyperplasia and severe hyperthyroidism causing premature death of the animals. The resulting goitre represents a model of hyperfunctioning adenomas: it demonstrates that constitutive activation of the cAMP cascade in such differentiated epithelial cells is sufficient to stimulate autonomous and uncontrolled function and growth.  相似文献   

4.
5.
A 365-bp fragment from the 5' region of the human transferrin receptor gene has been subcloned and sequenced. This fragment contains 115 bp of flanking sequence, the first exon, and a portion of the first intron. It contains a TATA box, several GC-rich regions, and is able to efficiently promote expression of the bacterial CAT gene in mouse 3T3 cells. Sequence comparisons demonstrate that this DNA segment has homology to the promoter regions of the human dihydrofolate reductase gene and the mouse interleukin 3 gene, as well as to a monkey DNA sequence that has homology to the SV40 origin and promotes expression of an unidentified gene product. Several high molecular mass proteins that interact with the transferrin receptor gene promoter have been identified. The activity of these proteins is transiently increased in 3T3 cells that have been stimulated by serum addition. This increase precedes a rise in transferrin receptor mRNA levels in the cytoplasm, which in turn precedes entry of the cells into S phase. DNase I footprinting of the transferrin receptor promoter reveals several protein binding sites. Two of the sites are within the conserved GC-rich region of the promoter. One of these binding sites probably interacts with Spl, while the second interacts with an uncharacterized protein.  相似文献   

6.
We have previously described bi-directional cross-talk between the retinoic acid (RA) and transforming growth factor beta (TGF-beta) signal transduction pathways in primary cultures of murine embryonic palate mesenchymal (MEPM) cells. In this paper we identify interactions between the TGF-beta1, cyclic adenosine 3', 5'-monophosphate (cAMP) and RA signaling systems. TGF-beta1 and forskolin, an activator of the cAMP pathway, inhibited RA-induced expression of RAR-beta mRNA in MEPM cells, though only TGF-beta1 inhibited RA-induced RAR-beta protein expression. Forskolin, but not TGF-beta1, abrogated RA-induced expression of a reporter construct containing 900 base pair (bp) of the RAR-beta gene promoter, transfected into MEPM cells, suggesting that this portion of the promoter contains the forskolin-responsive, but not the TGF-beta-responsive, element. Thus, a putative TGF-beta Inhibitory Element (TIE) adjacent to the retinoic acid response element (RARE) in the RAR-beta promoter is either non-functional, or requires promoter/enhancer elements not present in the promoter construct used in these experiments. These studies further clarify the complex interactions among signal transduction pathways in the regulation of retinoic acid receptor gene expression.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Imiquimod is recognized as an agonist for Toll-like receptor 7 (TLR7) in immunocompetent cells. TLR7, as well as TLR3 and TLR8, triggers the immune responses, such as the production of type I interferons (IFNs) and proinflammatory cytokines via recognition of viral nucleic acids in the infected cells. In this study, we proposed that imiquimod has an IFN-independent antiviral effect in nonimmune cells. Imiquimod, but not resiquimod, suppressed replication of human herpes simplex virus 1 (HSV-1) in FL cells. We analyzed alternation of gene expression by treatment with imiquimod using microarray analysis. Neither type I IFNs, nor TLRs, nor IFN-inducible antiviral genes were induced in imiquimod-treated FL cells. Cystatin A, a host cysteine protease inhibitor, was strongly upregulated by imiquimod and took a major part in the anti-HSV-1 activity deduced by the suppression experiment using its small interfering RNA. Upregulation of cystatin A was suggested to be mediated by antagonizing adenosine receptor A(1) and activating the protein kinase A pathway. Imiquimod, but not resiquimod, was shown to interact with adenosine receptor A(1). Imiquimod-induced anti-HSV-1 activity was observed in other cells, such as HeLa, SiHa, and CaSki cells, in a manner consistent with the cystatin A induction by imiquimod. These results indicated that imiquimod acted as an antagonist for adenosine receptor A(1) and induced a host antiviral protein, cystatin A. The process occurred independently of TLR7 and type I IFNs.  相似文献   

17.
18.
Previously, we demonstrated that the gastrin releasing peptide (GRP) induces cyclooxygenase-2 (COX-2) expression through a Rho-dependent, protein kinase C (PKC)-independent signaling pathway in fibroblasts (Slice et al., 1999, J Biol Chem 274:27562-27566). However, the specific role of heterotrimeric guanine nucleotide binding regulatory proteins (G-proteins) that are coupled to the GRP receptor in Rho-dependent COX-2 expression has not been elucidated. In this report, we utilize embryonic fibroblasts from transgenic mice containing double gene knock-outs (DKO) for Galpha(q/11) and Galpha(12/13) to demonstrate that COX-2 promoter activation by GRP requires Galpha(q). Furthermore, we show that GRP-dependent COX-2 gene expression, as assessed by a COX-2 reporter luciferase assay, was induced in cells lacking Galpha(12/13) but was blocked in cells that did not express Galpha(q/11). GRP-dependent COX-2 promoter induction in Galpha(q/11) deficient cells was rescued by expression of wild type Galpha(q) but blocked by inhibition of calcium signaling in calcium-free media or in cells treated with 2-aminoethoxydiphenylborate (2-APB). Co-stimulation of transfected Galpha(q/11) deficient cells with GRP and thapsigargin (TG) induced the COX-2 promoter. Activation of endogenous Rho by expression of Onco-lbc or expression of Rho A Q63L resulted in COX-2 promoter activation in Galpha(q/11) deficient cells. Inhibition of Rho by Clostridium botulinum C3 toxin blocked COX-2 promoter induction. Expression of Galpha(q) Q209L in the well-characterized fibroblast cell line, NIH3T3, induced the COX-2 promoter which was blocked by expression of C3 toxin. These results demonstrate that calcium signaling mediated by Galpha(q) and Rho play critical roles in GRP-dependent COX-2 expression in fibroblasts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号