共查询到4条相似文献,搜索用时 0 毫秒
1.
Photosynthetic performance was determined in three common Atlantic brown macroalgae, Cystoseira abies-marina, Dictyota dichotoma and Sargassum vulgare, in Gran Canaria, Canary Islands, on site. The photosynthetic quantum yield was measured with both a portable PAM instrument on site and a diving PAM under water in the habitat. In parallel, solar radiation was measured continuously above and under water by means of two three-channel dosimeters, ELDONET (Real Time Computer, M?hrendorf, Germany), in three wavelength ranges, UV-A, UV-B and PAR. The effective photosynthetic quantum yield decreased in all species in response to exposure to 15 min of solar radiation but recovered in the subsequent shade conditions within several hours. A 30-min exposure caused an even more profound photoinhibition from which the algae recovered only partially. Most of the effect was due to visible radiation, however, the UV wavelength range, and especially UV-B, considerably enhanced the decrease in photosynthetic quantum yield. In all species except Sargassum a significant photoinhibition was detected at their growth sites at high solar angles in the water column, measured with the diving PAM. 相似文献
2.
Photoinhibition by solar radiation in the Mediterranean alga Peyssonnelia squamata measured on site 总被引:2,自引:0,他引:2
Photoinhibition of photosynthesis, defined as reversible decrease in the effective photosynthetic quantum yield, was measured in the Mediterranean red alga, Peyssonnelia squamata, using pulse amplitude modulation (PAM) chlorophyll fluorescence and oxygen production on site. This alga is adapted to very low fluence rates of solar radiation and is easily inhibited by exposure to excessive radiation. At high solar angles its photosynthetic capacity is impaired even in its natural habitat, in the protective shade of overhanging rocks. Oxygen production was maximal at 5 m depth and decreased to almost zero at the surface. When exposed at the surface oxygen production ceased within 16 min. The optimal photosynthetic quantum yield, defined as Fv/Fm, was about 0.45 in dark-adapted specimens. After 30 min of exposure to unattenuated solar radiation the (effective, Fv/Fm) quantum yield decreased to below 0.1. Removing solar UV (especially UV-B) significantly reduced photoinhibition: the quantum yield of a sample exposed under a UV-B cut-off filter was double that of a sample exposed to full solar radiation after 30 min exposure. Recovery from photoinhibition took several hours and was not complete after prolonged exposure (1.5 h) to direct solar radiation. The degree of photoinhibition depended on the depth at which the thalli were exposed. Recovery from photoinhibition was complete within 2 h except when the algae were exposed at the surface. When measured over the whole day, the effective photosynthetic quantum yield significantly decreased by about 25% from initially high values toward early afternoon and rose again towards evening. The data indicate that this alga is adapted to very low irradiances and is easily inhibited by excessive solar radiation; solar UV contributes substantially to the observed photoinhibition. 相似文献
3.
Abstract: The effects of solar radiation on photosynthetic oxygen production and pulse amplitude modulated (PAM) fluorescence were measured in the marine brown macroalga Padina pavonia harvested from different depths from the Greek coast near Korinth. In fluence rate-response curves the light compensation point for photosynthetic oxygen production increased and the saturation level decreased with increasing exposure time to solar radiation. Cutting off the UV-B wavelength range (280–315 nm) from solar radiation reduced the inhibition of photosynthesis, and the organisms were less affected when all of the UV radiation was filtered out. Algae collected from 7 m depth were much more prone to photoinhibition than those harvested from rock pools exposed to unfiltered solar radiation. During continuous exposure to solar radiation, rock pool algae showed photoinhibition after longer periods of time than specimens from 7 m or from dark adapted habitats. When subjected to unfiltered solar radiation the ratio of the variable fluorescence to the maximal fluorescence (Fv = Fm − Fo ) rapidly declined with increasing exposure time. However, again algae from 7 m depth were more prone to photoinhibition than rock pool algae. The differences between the two ecological strains were less obvious when UV-B or total UV was removed from solar radiation. Only in the latter case a complete recovery was observed after 2 h while, when exposed to unifiltered sunlight, only the rock pool algae recovered completely within that time. 相似文献
4.
Miniaturized pulse‐amplitude modulated photosynthesis yield analysers are primarily designed for measuring effective quantum yield (ΔF/Fm′) of photosystem II under momentary ambient light conditions in the field. Although this provides important ecophysiological information, it is often necessary to learn more about the potential intrinsic capacities of leaves by measuring light‐response curves. Thus, instruments provide light‐curve programmes, where light intensities are increased in short intervals and instant light‐response curves are recorded within a few minutes. This method can be criticized because photosynthesis will most likely not be in steady state. This technical report shows that with the appropriate precautions instant light curves can nevertheless provide reliable information about cardinal points of photosynthesis. First, the geometry of the light source of the instrument in relation to the quantum sensor must be considered and quantum sensor readings must be corrected. Second, the measurements of the light‐response curves must be compared with readings of effective quantum yield of photosystem II under ambient light conditions where photosynthesis is in steady state. This may show that in the critical range of the light curves either both measurements perfectly coincide or are offset against each other by a constant value (examples are given here). In the first case results of light curves can be taken at face values, and in the second case a simple correction can be applied. With these precautions and careful interpretations instant light‐response curves can be an enormous advantage in ecophysiological field work. 相似文献