首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron paramagnetic resonance (EPR) spectroscopy of paramagnetic derivatives of ATP has been used to probe the angular distribution of myosin in glycerinated muscle fibers. Three nucleotide spin labels have been prepared with the nitroxide free radical moiety attached, via an ester linkage to either: the 2' or 3' positions of the ribose unit of ATP (SL-ATP), the 2' position of 3' deoxy ATP (2'SL-dATP), or the 3' position of 2' deoxy ATP (3'SL-dATP). In muscle fibers, these nucleotides are quickly hydrolyzed to their diphosphate forms. All three diphosphate analogues bind to the nucleotide site of myosin with similar affinities: rabbit psoas fibers, 7 X 10(3)/M; insect flight muscle, 5 X 10(3)/M; and rabbit soleus muscle, 2 X 10(4)/M. Analysis of the spectra showed that the principal z-axis of the nitroxide attached to bound nucleotides was oriented with respect to the filament axis. The principal axes of 3'SL-dADP and 2'SL-dADP appeared to be preferentially aligned at mean angles of 67 degrees +/- 4 degrees and 55 degrees +/- 5 degrees, respectively. The distribution of probes about these angles can be described by Gaussians with widths of 16 degrees +/- 4 degrees and 13 degrees +/- 5 degrees, respectively. The spectrum of bound SL-ADP was a linear combination of the spectra of the two deoxy analogues. These orientations were the same in the three muscle types examined, indicating a high degree of homology in the nucleotide binding site. Applying static strains as high as 0.2 N/mm2 to muscle fibers caused no change in the orientation of myosin-bound, spin-labeled nucleotides. When muscle fibers were stretched to decrease actin and myosin filament overlap, bound SL-ADP produced EPR spectra indicative of probes with a highly disordered angular distribution. Sodium vanadate and SL-ATP caused fiber stiffness to decrease, and the EPR spectrum of the bound analogue indicated an increase in the fraction of disoriented probes with a concomitant decrease in the fraction of oriented probes. These findings indicate that when myosin is bound to actin its nucleotide site is highly oriented relative to the fiber axis, and when this interaction is removed the orientation of the nucleotide site becomes highly disordered.  相似文献   

2.
Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers   总被引:3,自引:0,他引:3  
Electron paramagnetic resonance (e.p.r.) spectroscopy has been used to monitor the orientation of spin labels attached rigidly to a reactive SH residue on the light chain 2 (LC2) of myosin heads in muscle fibers. e.p.r. spectra from spin-labeled myosin subfragment-1 (S1), allowed to diffuse into unlabeled rigor (ATP-free) fibers, were roughly approximated by a narrow angular distribution of spin labels centered at 66 degrees relative to the fiber axis, indicating a uniform orientation of S1 bound to actin. On the other hand, spectra from spin-labeled heavy meromyosin (HMM) were roughly approximated by two narrow angular distributions centered at 42 degrees and 66 degrees, suggesting that the LC2 domains of the two HMM heads have different orientations. In contrast to S1 or HMM, the spectra from rigor fibers, in which LC2 of endogenous myosin heads was labeled, showed a random orientation which may be due to distortion imposed by the structure of the filament lattice and the mismatch of the helical periodicities of the thick and thin filaments. However, spectra from the fibers in the presence of ATP analog 5'-adenylyl imidodiphosphate (AMPPNP) were approximated by two narrow angular distributions similar to those obtained with HMM. Thus, AMPPNP may cause the LC2 domain to be less flexible and/or the S2 portion to be more flexible, so as to release the distortion of the LC2 domain and make it return to its natural position. At high ionic strength, AMPPNP disoriented the spin labels as ATP did under relaxing conditions, suggesting that the myosin head is detached from and/or weakly (flexibly) attached to a thin filament.  相似文献   

3.
B Hambly  K Franks    R Cooke 《Biophysical journal》1991,59(1):127-138
Electron paramagnetic resonance (EPR) spectroscopy has been used to study the angular distribution of a spin label attached to rabbit skeletal muscle myosin light chain 2. A cysteine reactive spin label, 3-(5-fluoro-2,4-dinitroanilino)-2,2,5,5- tetramethyl-1-pyrrolidinyloxy (FDNA-SL) was bound to purified LC2. The labeled LC2 was exchanged into glycerinated muscle fibers and into myosin and its subfragments. Analysis of the spectra of labeled fibers in rigor showed that the probe was oriented with respect to the fiber axis, but that it was also undergoing restricted rotations. The motion of the probe could be modeled assuming rapid rotational diffusion (rotational correlation time faster than 5 ns) within a "cone" whose full width was 70 degrees. Very different spectra of rigor fibers were obtained with the fiber oriented parallel and perpendicular to the magnetic field, showing that the centroid of each cone had the same orientation for all myosin heads, making an angle of approximately 74 degrees to the fiber axis. Binding of light chains or labeled myosin subfragment-1 to ion exchange heads immobilized the probes, showing that most of the motion of the probe arose from protein mobility and not from mobility of the probe relative to the protein. Relaxed labeled fibers produced EPR spectra with a highly disordered angular distribution, consistent with myosin heads being detached from the thin filament and undergoing large angular motions. Addition of pyrophosphate, ADP, or an ATP analogue (AMPPNP), in low ionic strength buffer where these ligands do not dissociate cross-bridges from actin, failed to perturb the rigor spectrum. Applying static strains as high as 0.16 N/mm2 to the labeled rigor fibers also failed to change the orientation of the spin label. Labeled light chain was exchanged into myosin subfragment-1 (S1) and the labeled S1 was diffused into fibers. EPR spectra of these fibers had a component similar to that seen in the spectra of fibers into which labeled LC2 had been exchanged directly. However, the fraction of disordered probes was greater than seen in fibers. In summary, the above data indicate that the region of the myosin head proximal to the thick filament is ordered in rigor, and disordered in relaxation.  相似文献   

4.
We have used electron paramagnetic resonance to study the orientation of myosin heads in the presence of nucleotides and nucleotide analogs, to induce equilibrium states that mimic intermediates in the actomyosin ATPase cycle. We obtained electron paramagnetic resonance spectra of an indane dione spin label (InVSL) bound to Cys 707 (SH1) of the myosin head, in skinned rabbit psoas muscle fibers. This probe is rigidly immobilized on the catalytic domain of the head, and the principal axis of the probe is aligned nearly parallel to the fiber axis in rigor (no nucleotide), making it directly sensitive to axial rotation of the head. On ADP addition, all of the heads remained strongly bound to actin, but the spectral hyperfine splitting increased by 0.55 +/- 0.02 G, corresponding to a small but significant axial rotation of 7 degrees. Adenosine 5'-(adenylylim-idodiphosphate) (AMPPNP) or pyrophosphate reduced the actomyosin affinity and introduced a highly disordered population of heads similar to that observed in relaxation. For the remaining oriented population, pyrophosphate induced no significant change relative to rigor, but AMPPNP induced a slight but probably significant rotation (2.2 degrees +/- 1.6 degrees), in the direction opposite that induced by ADP. Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) relaxed the muscle fiber, completely dissociated the heads from actin, and produced disorder similar to that in relaxation by ATP. ATP gamma S plus Ca induced a weak-binding state with most of the actin-bound heads disordered. Vanadate had negligible effect in the presence of ADP, but in isometric contraction vanadate substantially reduced both force and the fraction of oriented heads. These results are consistent with a model in which myosin heads are disordered early in the power stroke (weak-binding states) and rigidly oriented later in the power stroke (strong-binding states), whereas transitions among the strong-binding states induce only slight changes in the axial orientation of the catalytic domain.  相似文献   

5.
We have used electron paramagnetic resonance (EPR) spectroscopy to study the orientation and rotational motions of spin-labeled myosin heads during steady-state relaxation and contraction of skinned rabbit psoas muscle fibers. Using an indane-dione spin label, we obtained EPR spectra corresponding specifically to probes attached to Cys 707 (SH1) on the catalytic domain of myosin heads. The probe is rigidly immobilized, so that it reports the global rotation of the myosin head, and the probe's principal axis is aligned almost parallel with the fiber axis in rigor, making it directly sensitive to axial rotation of the head. Numerical simulations of EPR spectra showed that the labeled heads are highly oriented in rigor, but in relaxation they have at least 90 degrees (Gaussian full width) of axial disorder, centered at an angle approximately equal to that in rigor. Spectra obtained in isometric contraction are fit quite well by assuming that 79 +/- 2% of the myosin heads are disordered as in relaxation, whereas the remaining 21 +/- 2% have the same orientation as in rigor. Computer-simulated spectra confirm that there is no significant population (> 5%) of heads having a distinct orientation substantially different (> 10 degrees) from that in rigor, and even the large disordered population of heads has a mean orientation that is similar to that in rigor. Because this spin label reports axial head rotations directly, these results suggest strongly that the catalytic domain of myosin does not undergo a transition between two distinct axial orientations during force generation. Saturation transfer EPR shows that the rotational disorder is dynamic on the microsecond time scale in both relaxation and contraction. These results are consistent with models of contraction involving 1) a transition from a dynamically disordered preforce state to an ordered (rigorlike) force-generating state and/or 2) domain movements within the myosin head that do not change the axial orientation of the SH1-containing catalytic domain relative to actin.  相似文献   

6.
The structural changes of phalloidin-rhodamin labelled F-actin at relaxed and contracted skeletal muscle fibre containing phosphorylated myosin and at contracted state after dephosphorylation were investigated by measuring of polarized fluorescence of the fluorophore. The mechanical properties (isometric tension development) of fibre were studied in parallel. At submaximal concentration of Ca ions (0.6 mumol/l) the isometric tension was decreased after dephosphorylation of fibre myosin. The changes in polarization of fluorophore bound to actin filament were correlated with isometric tension developed by the muscle fibre. The angles between the actin filament long axis and the absorption and emission dipoles for contracted and relaxed fibre were different, suggesting changes in the organization of the actin monomers in thin filament, dependent on the physiological state of the fibre. The flexibility of the thin filaments during transition of the fibre from relaxed to "contracted" state increases as indicated by greater average angle between the F-actin long axis and the fibre axis.  相似文献   

7.
The rotational motion of crossbridges, formed when myosin heads bind to actin, is an essential element of most molecular models of muscle contraction. To obtain direct information about this molecular motion, we have performed saturation transfer EPR experiments in which spin labels were selectively and rigidly attached to myosin heads in purified myosin and in glycerinated myofibrils. In synthetic myosin filaments, in the absence of actin, the spectra indicated rapid rotational motion of heads characterized by an effective correlation time of 10 microseconds. By contrast, little or no submillisecond rotational motion was observed when isolated myosin heads (subfragment-1) were attached to glass beads or to F-actin, indicating that the bond between the myosin head and actin is quite rigid on this time scale. A similar immobilization of heads was observed in spin-labeled myofibrils in rigor. Therefore, we conclude that virtually all of the myosin heads in a rigor myofibril are immobilized, apparently owing to attachment of heads to actin. Addition of ATP to myofibrils, either in the presence or absence of 0.1 mM Ca2+, produced spectra similar to those observed for myosin filaments in the absence of actin, indicating rapid submillisecond rotational motion. These results indicate that either (a) most of the myosin heads are detached at any instant in relaxed or activated myofibrils or (b) attached heads bearing the products of ATP hydrolysis rotate as rapidly as detached heads.  相似文献   

8.
We have measured the microsecond rotational motions of myosin heads in contracting rabbit psoas muscle fibers by detecting the transient phosphorescence anisotropy of eosin-5-maleimide attached specifically to the myosin head. Experiments were performed on small bundles (10-20 fibers) of glycerinated rabbit psoas muscle fibers at 4 degrees C. The isometric tension and physiological ATPase activity of activated fibers were unaffected by labeling 60-80% of the heads. Following excitation of the probes by a 10-ns laser pulse polarized parallel to the fiber axis, the time-resolved emission anisotropy of muscle fibers in rigor (no ATP) showed no decay from 1 microsecond to 1 ms (r infinity = 0.095), indicating that all heads are rigidly attached to actin on this time scale. In relaxation (5 mM MgATP but no Ca2+), the anisotropy decayed substantially over the microsecond time range, from an initial anisotropy (r0) of 0.066 to a final anisotropy (r infinity) of 0.034, indicating large-amplitude rotational motions with correlation times of about 10 and 150 microseconds and an overall angular range of 40-50 degrees. In isometric contraction (MgATP plus saturating Ca2+), the amplitude of the anisotropy decay (and thus the amplitude of the microsecond motion) is slightly less than in relaxation, and the rotational correlation times are about twice as long, indicating slower motions than those observed in relaxation. While the residual anisotropy (at 1 ms) in contraction is much closer to that in relaxation than in rigor, the initial anisotropy (at 1 microsecond) is approximately equidistant between those of rigor and relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A simple method for obtaining glycerinated muscle fibres of m. psoas of rabbit containing regulatory myosin light chains (LC2) of different levels of phosphorylation. The glycerination conditions stimulated endogenic kinase LC2 or phosphatase LC2. Glycerinated muscle fibres contained phosphorylated and dephosphorylated (levels of phosphorylation are 95 +/- 5%, and 5 +/- 5%, respectively) LC2 of myosin. To determine the level of phosphorylation the method of polyacrylamide gel electrophoresis in 8 M urea was modified.  相似文献   

10.
We have used electron paramagnetic resonance (EPR) to determine the effects of ADP on the orientational distribution of nitroxide spin labels attached to myosin heads in skinned rabbit psoas muscle fibers. To maximize the specificity of labeling, we spin-labeled isolated myosin heads (subfragment 1) on a single reactive thiol (SH1) and diffused them into unlabeled muscle fibers. To maximize spectral and orientational resolution, we used perdeuterated spin labels, 2H-MSL and 2H-IASL, eliminating superhyperfine broadening and thus narrowing the line widths. Two different spin labels were used, with different orientation relative to the myosin head, to ensure that the results are not affected by unfavorable probe orientation. In rigor, a very narrow three-line spectrum was observed for both spin labels, indicating a narrow orientational distribution, as reported previously (Thomas & Cooke, 1980). ADP induced very slight changes in the spectrum, corresponding to very slight (but significant) changes in the orientational distribution. These changes were quantified by a digital analysis of the spectra, using a two-step simplex fitting procedure (Fajer et al., 1990). First, the magnetic tensor values and line widths were determined by fitting the spectrum of a randomly oriented sample. Then the spectrum of oriented fibers was fit to a model by assuming a Gaussian distribution of the tilt angle (theta) and twist angle (phi) of the nitroxide principal axes relative to the fiber axis. A single-Gaussian distribution resulted in inadequate fits, but a two-component model gave excellent results. ADP induces a small (less than 5 degrees) rotation of the major components for both spin labels, along with a similarly small increase of disorder about the average positions.  相似文献   

11.
Glycerinated muscle fibers isolated from rabbit psoas muscle, and a number of other nonmuscle elastic fibers including glass, rubber, and collagen, were exposed to hydrostatic pressures of up to 10 MPa (100 Atm) to determine the pressure sensitivity of their isometric tension. The isometric tension of muscle fibers in the relaxed state (passive tension) was insensitive to increased pressure, whereas the muscle fiber tension in rigor state increased linearly with pressure. The tension of all other fiber types (except rubber) also increased with pressure; the rubber tension was pressure insensitive. The pressure sensitivity of rigor tension was 2.3 kN/m2/MPa and, in comparison with force/extension relation determined at atmospheric pressure, the hydrostatic compression in rigor muscle fibers was estimated to be 0.03% Lo/MPa. As reported previously, the active muscle fiber tension is depressed by increased pressure. The possible underlying basis of the different pressure-dependent tension behavior in relaxed, rigor, and active muscle is discussed.  相似文献   

12.
We have used saturation transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin heads in bundles of skinned muscle fibers, under conditions of rigor, relaxation, and isometric contraction. Experiments were performed on fiber bundles perfused continuously with an ATP-regenerating system. Conditions were identical to those we have used in previous studies of myosin head orientation, except that the fibers were perpendicular to the magnetic field, making the spectra primarily sensitive to rotational motion rather than to the orientational distribution. In rigor, the high intensity of the ST-EPR signal indicates the absence of microsecond rotational motion, showing that heads are all rigidly bound to actin. However, in both relaxation and contraction, considerable microsecond rotational motion is observed, implying that the previously reported orientational disorder under these conditions is dynamic, not static, on the microsecond time scale. The behavior in relaxation is essentially the same as that observed when myosin heads are detached from actin in the absence of ATP (Barnett and Thomas, 1984), corresponding to an effective rotational correlation time of approximately 10 microseconds. Slightly less mobility is observed during contraction. One possible interpretation is that in contraction all heads have the same mobility, corresponding to a correlation time of approximately 25 microseconds. Alternatively, more than one motional population may be present. For example, assuming that the spectrum in contraction is a linear combination of those in relaxation (mobile) and rigor (immobile), we obtained a good fit with a mole fraction of 78-88% of the heads in the mobile state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
We have used electron paramagnetic resonance spectroscopy (EPR) to investigate the orientational distribution of actin in thin filaments of glycerinated muscle fibers in rigor, relaxation, and contraction. A spin-labeled derivative of a mushroom toxin, phalloidin (PHSL), was bound to actin in the muscle fibers (PHSL–fibers). The EPR spectrum of unoriented PHSL–labeled myofibrils consisted of three sharp lines with a splitting between the outer extrema (2T) of 42.8 ± 0.1 G, indicating that the spin labels undergo restricted nanosecond rotational motion within an estimated halfcone angle of 76°. When the PHSL–fiber bundle was oriented parallel to the magnetic field, the splitting between the zero-crossing points (2T′) was 42.7 ± 0.1 G. When the fiber bundle was perpendicular to the magnetic field, 2T′ decreased to 34.5 ± 0.2 G. This anisotropy shows that the motion of the probe is restricted in orientation by its binding site on actin, so that the EPR spectrum of PHSL–fiber bundles would be sensitive to small changes in the mean axial orientation of the PHSL–actin interface. No differences in the EPR spectra were observed in fibers during rigor, relaxation, or contraction, indicating that the mean axial orientation of the PHSL binding site changes by less than 5°, and that the amplitude of nanosecond probe rotational motion, which should be quite sensitive to the local environment of the phalloidin, changes by no more than 1°. These results rule out large changes in the overall geometry of the actin filament and in the local conformation of actin near the phalloidin binding site during the generation of isometric tension in muscle fibers. © 1993 Wiley-Liss, Inc.  相似文献   

16.
17.
18.
19.
P Graceffa 《Biochemistry》1999,38(37):11984-11992
It has been proposed that during the activation of muscle contraction the initial binding of myosin heads to the actin thin filament contributes to switching on the thin filament and that this might involve the movement of actin-bound tropomyosin. The movement of smooth muscle tropomyosin on actin was investigated in this work by measuring the change in distance between specific residues on tropomyosin and actin by fluorescence resonance energy transfer (FRET) as a function of myosin head binding to actin. An energy transfer acceptor was attached to Cys374 of actin and a donor to the tropomyosin heterodimer at either Cys36 of the beta-chain or Cys190 of the alpha-chain. FRET changed for the donor at both positions of tropomyosin upon addition of skeletal or smooth muscle myosin heads, indicating a movement of the whole tropomyosin molecule. The changes in FRET were hyperbolic and saturated at about one head per seven actin subunits, indicating that each head cooperatively affects several tropomyosin molecules, presumably via tropomyosin's end-to-end interaction. ATP, which dissociates myosin from actin, completely reversed the changes in FRET induced by heads, whereas in the presence of ADP the effect of heads was the same as in its absence. The results indicate that myosin with and without ADP, intermediates in the myosin ATPase hydrolytic pathway, are effective regulators of tropomyosin position, which might play a role in the regulation of smooth muscle contraction.  相似文献   

20.
We have investigated the ability of the photoaffinity, nonnucleotide ATP analogues, 2-[(4-azido-2-nitrophenyl) amino] ethyl triphosphate (NANTP) and 2-[(4-azido-2-nitrophenyl) amino] propyl triphosphate (PrNANTP), to support active contraction in glycerinated rabbit psoas fibers. At millimolar concentrations, in the absence of calcium, both analogues relaxed fibers. In the presence of calcium, MgNANTP produced isometric tension and stiffness that were one-half to two-thirds the values obtained in MgATP. Maximum shortening velocity and the calcium-activated, myofibrillar catalyzed rate of hydrolysis were approximately the same for MgNANTP as for MgATP. With MgNANTP as the substrate, increasing concentrations of the diphosphate analogue, MgNANDP, inhibited shortening velocity but did not change isometric tension. The addition of increased concentrations of orthophosphate (P) decreased tension while shortening velocity increased. Thus, the effects of the hydrolysis products of NANTP were quite similar to those observed previously for ADP and P in the presence of MgATP. Taken together, these observations show that MgNANTP binds to, and functions in the active site of myosin in a manner quite analogous to MgATP. Thus, the aryl azido group should serve as a valid photoaffinity label for the purine portion of the active site. In contrast, MgPrNANTP, which differs from MgNANTP only in an extra CH2 spacer between the nitrophenyl ring and the triphosphate moiety did not support isometric tension or active shortening in the presence of calcium. Fiber stiffness increased in the presence of calcium and MgPrNANTP, with a calcium-activated, myofibrillar MgPrNANTPase which was about half that obtained with MgATP. Thus, in the presence of MgPrNANTP, cross-bridges appeared to be cycling through states that were attached to actin, but not producing force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号