首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Ca2+, Mg2+-ionophores X537A and A23,187 (10(-7)-10(-6) M) induced the release of adenine nucleotides adenosine diphosphate (ADP, adenosine triphosphate (ATP), serotonin, beta-glucuronidase, Ca2+, and Mg2+ from washed human platelets. Enzymes present in the cytoplasm or mitochondria, and Zn2+ were not released. The rate of ATP and Ca2+ release measured by firefly lantern extract and murexide dye, respectively, was equivalent to that produced by the physiological stimulant thrombin. Ionophore-induced release of ADP, and serotonin was substantially (approximately 60%) but not completely inhibited by EGTA, EDTA, and high extracellular Mg2+, without significant reduction of Ca2+ release. The ionophore-induced release reaction is therefore partly dependent upon uptake of extracellular Ca2+ (demonstrated using 45Ca), but also occurs to a significant extent due to release into the cytoplasm of intracellular Ca2+. The ionophore-induced release reaction and aggregation of platelets could be blocked by prostaglandin E1 (PGE1) or dibutyryl cyclic AMP. The effects of PGE1, and N6, O2-dibutyryl adenosine 3':5'-cyclic monophosphoric acid (dibutyryl cAMP) were synergistically potentiated by the phosphodiesterase inhibitor theophylline. It is proposed that Ca2+ is the physiological trigger for platelet secretion and aggregation and that its intracellular effects are strongly modulated by adenosine 3':5'-cyclic monophosphoric acid (cyclic AMP).  相似文献   

2.
The inhibition of Ca2+-dependent ATPase from SR [EC 3.6.1.3] by ADP was of mixed type under both low Ca2+ and high Mg2+ concentration and high Ca2+ and low Mg2+ concentrations. On the other hand, the inhibition of Na+, K+-dependent ATPase [EC 3.6.1.3] by ADP was of competitive type in the presence of low and high K+ concentrations. These results suggest that ADP is released before Pi from the phosphoenzyme with bound ADP (EPADP) in the case of Ca2+-ATPase, but that Pi is released before ADP in the case of Na+, K+-ATPase.  相似文献   

3.
The transmembrane potential of isolated chromaffin granules has been measured using the permeant ions [14C]methylamine and [35S]thiocyanate, as well as the fluorescent probe, 9-aminoacridine. At pH 7.0, the granule membrane had a Nernst proton potential of -45mV, inside negative. This potential was sensitive to the external pH, but was unaffected by K+,Na+, Ca2+, Mg2+, or other cations. The pH of zero potential was 6.25 for both methylamine and thiocyanate. Thiocyanate also had a Nernst potential of similar magnitude and sign to that of methylamine at pH 7.0, and was also sensitive to variation in external pH. Mg2+ATP was found to depolarize the granule membrane by a saturable mechanism with a K 1/2 for ATP of 40 muM. Ca2+ was only 30% as effective as Mg2+ in supporting the ATP effect. The pH optimum for this process was 6.25 and appeared to be accompanied by a marked alkalinization of the granule interior. The specificity for ATP was further tested with structural analogs of ATP and GTP. The rate of change of membrane potential in response to changes in external pH or Mg2+ATP was estimated using the fluorescent probe 9-aminoacridine. Changes came to completion in less than 1 s. This suggested that the ATP effects were not dependent on an enzymatic transformation but on an ATP-induced conformational change in the membrane. We conclude that the chromaffin granule exists in at least two proton permeability states, corresponding to the presence or absence of Mg2+ATP. These states may be related to hormone release from granules and regulation of secretion in vivo.  相似文献   

4.
Toxoplasma gondii, the agent causing toxoplasmosis, is an obligate intracellular protozoan parasite. A calcium signal appears to be essential for intracellular transduction during the active process of host cell invasion. We have looked for a Ca2+-transport ATPase in tachyzoites and found Ca2+-ATPase activity (11-22 nmol Pi liberated/mg protein/min) in the tachyzoite membrane fraction. This ATP-dependent activity was stimulated by Ca2+ and Mg2+ ions and by calmodulin, and was inhibited by pump inhibitors (sodium orthovanadate or thapsigargin). We used cytochemistry and X-ray microanalysis of cerium phosphate precipitates and immunolabelling to find the Ca2+, Mg2+-ATPase. It was located mainly in the membrane complex, the conoid, nucleus, secretory organelles (rhoptries, dense granules) and in vesicles with a high calcium concentration. Thus, Toxoplasma gondii possesses Ca2+-pump ATPase (Ca2+, Mg2+-ATPase) as do eukaryotic cells.  相似文献   

5.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane.  相似文献   

6.
The Ca2(+)-ATPase found in the light fraction of sarcoplasmic reticulum vesicles can be phosphorylated by Pi, forming an acylphosphate residue at the catalytic site of the enzyme. This reaction was inhibited by the phenothiazines trifluoperazine, chlorpromazine, imipramine, and fluphenazine and by the beta-adrenergic blocking agents propranolol and alprenolol. The inhibition was reversed by raising either the Pi or the Mg2+ concentration in the medium and was not affected by the presence of K+. Phosphorylation of the Ca2(+)-ATPase by Pi was also inhibited by ruthenium red and spermidine. These compounds compete with Mg2+, but, unlike the phenothiazines, they did not compete with Pi at the catalytic site, and the inhibition was abolished when K+ was included in the assay medium. The efflux of Ca2+ from loaded vesicles was greatly increased by the phenothiazines and by propranolol and alprenolol. In the presence of 200 microM trifluoperazine, the rate of Ca2+ efflux was higher than 3 mumol of Ca2+/mg of protein/10 s. The activation of efflux by these drugs was antagonized by Pi, Mg2+, K+, Ca2+, ADP, dimethyl sulfoxide, ruthenium red, and spermidine. The increase of Ca2+ efflux caused by trifluoperazine was not correlated with binding of the drug to the membrane lipids. It is concluded that the Ca2+ pump can be uncoupled by different drugs, thereby greatly increasing the efflux of Ca2+ through the ATPase. Displacement of these drugs by the natural ligands of the ATPase blocks the efflux through the uncoupled pathway and limits it to a much smaller rate. Thus, the Ca2(+)-ATPase can operate either as a pump (coupled) or as a Ca2+ channel (uncoupled).  相似文献   

7.
A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca2+, adenine nucleotides, and Mg2+ on the Ca2+ release behaviour of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid 45Ca2+ efflux from passively loaded vesicles was blocked by the addition of Mg2+ and ruthenium red. At pH 7 and 10(-9) M Ca2+, vesicles released 45Ca2+ with a low rate (k = 0.1 s-1). An increase in external Ca2+ concentration to 4 microM or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) (AMP-PCP) resulted in intermediate 45Ca2+ release rates. The maximal release rate was observed in media containing 4 microM Ca2+ and 5 mM AMP-PCP and had a first-order rate constant of 30-100 s-1. Mg2+ partially inhibited Ca2+- and nucleotide-induced 45Ca2+ efflux. In the absence of AMP-PCP, 45Ca2+ release was fully inhibited at 5 mM Mg2+ or 5 mM Ca2+. The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca2+ release by ATP and AMP-PCP were 1.6-1.9. The Hill coefficient of Ca2+ activation (n = 0.8-2.1) was dependent on nucleotide and Mg2+ concentrations, whereas the one of Mg2+ inhibition (n = 1.1-1.6) varied with external Ca2+ concentration. These results suggest that heavy SR vesicles contain a "Ca2+ release channel" which is capable of conducting Ca2+ at rates comparable with those found in intact muscle. Ca2+, AMP-PCP (ATP), and Mg2+ appear to act at noninteracting or interacting sites of the channel.  相似文献   

8.
The elemental and water content of cultured bovine adrenal chromaffin cells and their secretory chromaffin granules have been measured and compared with isolated chromaffin granules using quick freezing, ultracryomicrotomy, and electron microprobe analysis methods. In units of millimole/kilogram dry weight (+/- S.E.) granules in situ contained: P, 523 +/- 32; K+, 124 +/- 9; S, 82 +/- 3; Cl-, 74 +/- 9; Ca2+, 13 +/- 2; Mg2+, 6 +/- 2; and Na+, -2 +/- 2. Following routine isolation in isotonic sucrose buffer, granule K and Cl- had decreased while granule Na+ increased. Cl- exhibited a consistent decrease to 35-40 mmol/kg dry weight. Granule Na+ and K+ concentrations ranged from 43 to 12 mmol/kg and 28 to 60 mmol/kg dry weight, respectively, depending on the Na+ and K+ content of the buffer. Despite the redistribution of monovalent ions, granule Ca2+, granule P, being in the form of ATP, and granule S, being in the form of protein, were not significantly changed. The stability of these elements is consistent with the existence of a stable storage complex for Ca2+, ATP, and protein. Using the granule as an internal standard with a water content of 66%, the water contents of external space, nucleus, cytoplasm, and mitochondria were estimated to be 89, 88, 82, and 70%, respectively. Wet weight concentrations for each element were calculated for granules and cytoplasm from which the transgranular concentration gradients for K+, Cl-, and Na+ were determined. Cl-, a permeant anion, was 2-fold higher in the granule than in the cytoplasm while K+, a slightly permeant cation, had an opposite distribution ratio slightly less than two. Together, the K+ and Cl- data suggest the presence of an inside-positive granule membrane potential of approximately 10-16 mV. The surprising lack of Na+ from the granule matrix suggests a hugh inward gradient for Na+ even though the Na+ content of chromaffin cell cytoplasm is low at 5 mmol/kg water. The lack of an outward Na+ gradient is important in that it indicates that the previously described electroneutral Na+-Ca2+ exchange system, by which isolated granules accumulate Ca2+, does not operate in mature granules in situ. Consequently, if chromaffin granules regulate internal calcium during stimulus secretion coupling, a mechanism other that Na+-Ca2+ exchange is necessary.  相似文献   

9.
Treatment of sarcoplasmic reticulum membranes with 12 mM-methylbenzimidate (MBI) for 5 min, in the presence of 5 mM-ATP at pH 8.5, resulted in a 2-3-fold stimulation of ATP hydrolysis and over 90% inhibition of Ca2+ accumulation. This phenomenon was strictly dependent upon the presence of nucleotides with the following order of effectiveness: adenosine 5'-[beta, gamma-imido]triphosphate greater than or equal to ATP greater than UTP greater than ADP greater than AMP. Divalent cations such as Ca2+, Mg2+ and Mn2+, when present during the MBI treatment, prevented both the stimulation of ATPase activity and the inhibition of Ca2+ accumulation. Modification with MBI had no effect on E-P formation from ATP, ADP-ATP exchange, Ca2+ binding or ATP-Pi exchange catalysed by the membranes. Membranes modified with MBI in the presence of ATP and then passively loaded with Ca2+ released about 80% of their Ca2+ content within 3 s. Control membranes released only 3% of their Ca2+ during the same time period. MBI modification inhibited Ca2+ accumulation by proteoliposomes reconstituted with the partially purified ATPase but not with the purified ATPase fraction. These results suggest that MBI in the presence of ATP stimulates Ca2+ release by modifying a protein factor(s) other than the (Ca2+ + Mg2+)-ATPase.  相似文献   

10.
Reversal of the cycle of sarcoplasmic reticulum ATPase starts from ATPase phosphorylation by Pi, in the presence of Mg2+, and leads to ATP synthesis. We show here that ATP can also be synthesized when Ca2+ replaces Mg2+. In the absence of a calcium gradient and in the presence of dimethyl sulfoxide, ATPase phosphorylation from Pi and Ca2+ led to the formation of an unstable phosphoenzyme. This instability was due to a competition between the phosphorylation reaction induced by Pi and Ca2+ and the transition induced by Ca2+ binding to the transport sites, which led to a conformation that could not be phosphorylated from Pi. Dimethyl sulfoxide and low temperature stabilized the calcium phosphoenzyme, which under appropriate conditions, subsequently reacted with ADP to synthesize ATP. Substitution of Co2+, Mn2+, Cd2+, or Ni2+ for Mg2+ induced ATPase phosphorylation from Pi, giving phosphoenzymes of various stabilities. However, substitution of Ba2+, Sr2+, or Cr3+ produced no detectable phosphoenzymes, under the same experimental conditions. Our results show that ATPase phosphorylation from Pi, like its phosphorylation from ATP, does not have a strict specificity for magnesium.  相似文献   

11.
Highly purified pig myocardium sarcolemma vesicles possess the Ca2+,Mg2+-ATPase activity (4.1 mumol Pi/mg protein/hour) and induce the ATP-dependent accumulation of 45Ca2+ (6.0 nmol/mg protein/min). This reaction is not stimulated by oxalate; Ca2+ are released from the vesicles by saponin and Na+ treatment, which suggests that Ca2+ transport against the concentration gradient is induced by myocardium sarcolemma vesicles and not by sarcoplasmic reticulum fragments. The phorbol ester possessing a biological activity of a growth-promoting factor and activating membrane-bound protein kinase C stimulates the Ca2+,Mg2+-ATPase activity and the ATP-dependent accumulation of Ca2+, whereas its counterpart devoid of biological activity does not influence Ca2+ transport. Polymixin B, a specific inhibitor of protein kinase C, prevents the activating effect of phorbol esters on Ca2+ accumulation inside the vesicles. It is suggested that the ATP-dependent transport of Ca2+ in myocardium sarcolemma is controlled by Ca2+-phospholipid-dependent phosphorylation catalyzed by protein kinase C.  相似文献   

12.
1. (Na+ + K+)-dependent adenosine triphosphatase was phosphorylated on the alpha-subunit by Pi in the presence of Mg2+. Phosphorylation was stimulated by ouabain. The interactions of Pi, Mg2+, and ouabain with the enzyme could be explained by a random terreactant scheme in which the binding of each ligand to the enzyme increased the affinities for the other two. Dissociation constants of all steps of this scheme were estimated. 2. In the presence of Pi and ouabain and without added Mg2+, the phosphoenzyme was formed. Because this could be prevented by ethylenediaminetetraacetic acid, but not ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, phosphoenzyme formation under these conditions was probably dependent on traces of endogenous Mg2+. The ability of this Mg2+ to support phosphorylation could be explained by the large increase in the enzyme's affinity for Mg2+ by ouabain. 3. In the absence of ouabain, Ca2+ did not support phosphorylation and inhibited Mg2+-dependent phosphorylation. At lower concentrations, Ca2+ was competitive with Mg2+. With increasing Ca2+ concentration, negative cooperativity was observed, suggesting the existence of multiple divalent cation sites with equivalent affinities for Mg2+, but varying affinities for Ca2+. 4. In the presence of ouabain, the maximum inhibition of Mg2+-dependent phosphorylation by Ca2+ was 50%. With saturating Pi, Mg2+, and ouabain, the number of sites binding ouabain was equal to the number of sites phosphorylated. Although Ca2+ halved phosphorylation and reduced the affinity for ouabain about 100-fold, it did not affect the number of ouabain sites. 5. We suggest that the enzyme is an alpha-oligomer and that the half-of-the-sites reactivity for phosphorylation in the presence of Pi, Mg2+, ouabain, and optimal Ca2+ is caused by (a) ouabain-induced increase in the affinities of both protomers for Mg2+ and (b) the inability of Ca2+ to replace Mg2+ on one of the protomers.  相似文献   

13.
Effect of pH on nickel biosorption by aerobic granular sludge   总被引:13,自引:0,他引:13  
Xu H  Liu Y  Tay JH 《Bioresource technology》2006,97(3):359-363
The Ni2+ biosorption by aerobic granular sludge was studied at various initial pH values of 2-7. Results showed that the initial pH would play an important role in the Ni2+ removal by aerobic granules and affected the zeta potential of aerobic granules. A thermodynamic equilibrium isotherm previously developed can fit the experimental data very well at all studied pH values. The close relationship between the zeta potential and Ni2+ biosorption capacity of aerobic granules showed the electrostatic attraction between the aerobic granules and Ni2+ ions. It was also found that some light metals, such as K+, Mg2+ and Ca2+ would be released into the bulk solution during the Ni2+ uptake onto the aerobic granules, which in turn indicated that ion-exchange was one of the Ni2+ biosorption mechanisms.  相似文献   

14.
Rabbit skeletal muscle sarcoplasmic reticulum was fractionated into a "Ca2+-release" and "control" fraction by differential and sucrose gradient centrifugation. External Ca2+ (2-20 microM) caused the release of 40 nmol of 45Ca2+/mg of protein/s from Ca2+-release vesicles passively loaded at pH 6.8 with an internal half-saturation Ca2+ concentration of 10-20 mM. Ca2+-induced Ca2+ release had an approximate pK value of 6.6 and was half-maximally inhibited at an external Ca2+ concentration of 2 X 10(-4) M and Mg2+ concentration of 7 X 10(-5) M. 45Ca2+ efflux from control vesicles was slightly inhibited at external Ca2+ concentrations that stimulated the rapid release of Ca2+ from Ca2+-release vesicles. Adenine, adenosine, and derived nucleotides caused stimulation of Ca2+-induced Ca2+ release in media containing a "physiological" free Mg2+ concentration of 0.6 mM. At a concentration of 1 mM, the order of effectiveness was AMP-PCP greater than cAMP approximately AMP approximately ADP greater than adenine greater than adenosine. Other nucleoside triphosphates and caffeine were minimally effective in increasing 45Ca2+ efflux from passively loaded Ca2+-release vesicles. La3+, ruthenium red, and procaine inhibited Ca2+-induced Ca2+ release. Ca2+ flux studies with actively loaded vesicles also indicated that a subpopulation of sarcoplasmic reticulum vesicles contains a Ca2+ permeation system that is activated by adenine nucleotides.  相似文献   

15.
The Ca(2+)-stimulated adenosine 5'-triphosphate-orthophosphate (ATP in equilibrium with 32Pi) exchange reaction was studied using a vesicular preparation derived from plasma membrane of kidney proximal tubules. With native inside-out vesicles, ATP in equilibrium with 32Pi was stimulated by micromolar Ca2+ concentrations. Treatment of the vesicles with the Ca2+ ionophore A23187 that abolished Ca2+ accumulation, strongly inhibited ATP in equilibrium with 32Pi. When Ca(2+)-ATPase was solubilized with the nonionic detergent octaethylene glycol mono n-dodecyl ether, maximal activation of ATP in equilibrium with 32Pi required millimolar Ca2+ concentrations. These Ca2+ concentrations inhibited ATP hydrolysis. ATP in equilibrium with 32Pi exhibited a Michaelian dependence on Pi and Mg2+, was stimulated by ATP, and depended on the ATP/ADP ratio. ATP in equilibrium with 32Pi was modified by the osmolytes urea, trimethylamine-N-oxide, and sucrose, which are representative of the methylamines and polyols that normally accumulate in renal tissue. These compounds did not modify the apparent affinity for Pi; they affected the response to ADP in the same fashion as the overall rate of ATP in equilibrium 32Pi, and their effects depended on medium pH. These data show that the Ca(2+)-ATPase from plasma membrane kidney proximal tubules can operate simultaneously in forward and backward directions. They also show that ATP in equilibrium with 32Pi is modulated by the ligands Ca2+, ATP, ADP, Pi, Mg2+, and H+, and by organic solutes found in renal tissue.  相似文献   

16.
The effects of ionophore A23187 on the incorporation of 32Pi into phospholipids and on 45Ca2+ uptake and release by polymorphonuclear leukocytes were examined. A23187 increased 32Pi incorporation into phosphatidic acid, phosphatidylglycerol, phosphatidylserine, and the phosphoinositides. It also promoted a rapid burst uptake and release of 45Ca2+ by leukocytes. External Ca2+, but not Mg2+, was required for full stimulation of 32Pi incorporation into phosphatidic acid and the phosphoinositides. In the absence of external Ca2+, the increased radiophosphorus activity of phosphatidic acid, phosphatidylserine and the phosphoinositides was grossly reduced but not eliminated, and the decreased radiophosphorus activity of phosphatidylcholine became pronounced. In addition, the ionophore effect on 32Pi incorporation into leukocyte phospholipids was not abolished by ethyleneglycol bis(beta-amino-ethylether)-N,N'-tetraacetic acid. ATP radiophosphorus activity was also enhanced by the presence of A23187, but the enhancement was much less than that of the acidic phospholipids. Based on these findings, it is suggested that the increased 32Pi incorporation into the acidic phospholipids of leukocytes induced by A23187 was not solely derived from the higher radioactivity of ATP, increased Ca2+ fluxes and perturbation of cellular Ca2+ distribution of leukocytes exposed to A 23187 may trigger part of the altered 32Pi incorporation into phospholipids.  相似文献   

17.
The interactions of the S100 protein (S100) with metal cations such as Ca2+, Mg2+, Zn2+ and K+ were studied by the metal n.m.r. spectroscopy. The line widths of 43Ca, 25Mg, 67Zn and 39K n.m.r. markedly increased by adding all S100s. A broad 43Ca n.m.r. band of Ca(2+)-S100a solution was not affected by Zn2+ and K+, while it was greatly decreased by adding Mg2+. The 43Ca n.m.r. spectra of Ca(2+)-S100a0 and -S100b solutions consisted of two slow-exchangeable signals which corresponded to Ca2+ bound to two environmentally different sites of the S100a0. These two 43Ca n.m.r. signals were not affected by Zn2+ and K+. The line width of broad 25Mg n.m.r. band of the Mg(2+)-S100 solution greatly decreased by adding Ca2+, while it did not change by adding Zn2+ and K+. Further, the addition of Ca2+, Mg2+ and K+ did not affect the line width of the 67Zn n.m.r. of the Zn(2+)-S100 solutions. These findings suggest that: (1) Mg2+ binds to all S100s, and at least one of the Mg2+ binding sites of S100 molecule is the same as the Ca2+ binding site; (2) Zn2+ binds to S100s, although the binding site(s) is/are different from Ca(2+)- or Mg(2+)-binding site(s), and the environment of Zn2+ nuclei will not change even though Ca2+ binds to S100s.  相似文献   

18.
The first step towards ATP synthesis by the Ca2-ATPase of sarcoplasmic reticulum is the phosphorylation of the enzyme by Pi. Phosphoenzyme formation requires both Pi and Mg2+. At 35 degrees C, the presence of a Ca2+ gradient across the vesicle membrane increases the apparent affinity of the ATPase for Pi more than 10-fold, whereas it had no effect on the apparent affinity for Mg2+. In the absence of a Ca2+ gradient, the phosphorylation reaction is inhibited by both K+ and Na+ at all Mg2+ concentrations used. However, in the presence of 1 mM Mg2+ and of a transmembrane Ca2+ gradient, the reaction is still inhibited by Na+, but the inhibition promoted by K+ is greatly decreased. When the Mg2+ concentration is raised above 2 mM, the enzyme no longer discriminates between K+ and Na+, and the phosphorylation reaction is equally inhibited by the two cations. Trifluoperazine, ruthenium red and spermidine were found to inhibit the phosphorylation reaction by different mechanisms. In the absence of a Ca2+ gradient, trifluoperazine competes with the binding to the enzyme of both Pi and Mg2+, whereas spermidine and ruthenium red were found to compete only with Mg2+. The data presented suggest that the enzyme has different binding sites for Mg2+ and for Pi.  相似文献   

19.
Stimulation of postconfluent Swiss 3T3 cells in serum-free medium with 4.3 mM Ca2+ results in marked increases in both released and cell-associated plasminogen activator (PA). Increased release of PA commenced approximately 10 to 12 hours post-stimulation and continued to increase steadily until 48 hours at which time the stimulates cells (4.3 mM Ca2+) released approximately 14 times more PA than control cells (1.8 mM Ca2+). Sr2+, like Ca2+, also stimulates PA synthesis/release either in the presence or in the absence of 1.8 mM Ca2+ whereas an excess of Mg2+ inhibits Ca2+ stimulation. Supranormal [Pi] in the medium stimulates PA synthesis/release in the presence of 1.8 mM mM Ca2+. Further, optimal stimulation by 4.3 mM Ca2+ requires a normal level of Pi (1.0 mM). Elevation of medium [Ca2+] or [Pi] results in an enhanced uptake of Ca2+. The facts that cycloheximide treatment completely abolishes the Ca2+ stimulatory effect and that an increase in cell associated PA precedes release indicate that PA release is coupled to synthesis of new PA. Ca2+ stimulation of PA synthesis/release also requires continuous energy production and RNA as well as protein synthesis. A hypothesis is proposed to explain the relationship between stimulation of PA production and its enhanced release from cells stimulated by elevated [Ca2+] or [Pi] in the media. The possibility that PA release may be an example of the phenomenon of membrane shedding as opposed to secretion is discussed.  相似文献   

20.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号