共查询到20条相似文献,搜索用时 0 毫秒
1.
T. Kon S. H. Hidayat K. Ito S. Hase H. Takahashi M. Ikegami 《Journal of Phytopathology》2005,153(9):562-566
We report that several begomoviruses are associated with tomato leaf curl disease in Java, Indonesia. Tomato plants with leaf curl symptoms were collected from Bandung (west Java), Purwokerto (central Java), Magelang (central Java) and Malang (east Java) of Indonesia, the major tomato‐growing areas of the country. Viruses were detected using the polymerase chain reaction (PCR), with universal primers for the genus Begomovirus. PCR‐amplified fragments were cloned and sequenced. Based on sequence comparisons and phylogenetic analyses, the viruses were divided into three groups. With respect to amino acid (aa) identities of the N‐terminal halves of the coat proteins compared in this study, group I was most closely related to Ageratum yellow vein virus (AYVV) (97%), Ageratum yellow vein China virus‐[Hn2] (AYVCNV‐[Hn2]) (96%) and Ageratum yellow vein virus‐[Taiwan] (AYVV‐[Tai]) (95%), and ageratum‐infecting begomovirus from Java (99%). Group II had high sequence identity with a tentative species of tomato leaf curl Java virus (ToLCJAV) (96% aa) for the CP. Group III was most closely related to a proposed species of Pepper yellow leaf curl Indonesia virus (PepYLCIDV) (90% aa identity) by its partial CP sequence. 相似文献
2.
The occurrence of Tomato yellow leaf curl virus (TYLCV; genus Begomovirus, family Geminiviridae) in the major tomato‐growing areas of Iran was determined using TAS‐ELISA and PCR. The nucleotide sequences of the coat protein (CP) gene and intergenic region (IR) of eight Iranian isolates were determined. CP nucleotide identities among the Iranian isolates were 96–98%, and showed 94–96% identity with TYLCV‐IR [IR:Ira:98] and TYLCV‐IL [IL:Reo:86]. However, they showed low identity (68–69%) with ToLCIRV‐[IR:Ira]. Sequence analyses of IR indicated that seven Iranian isolates had sequence identity of 93–100% with each other, and 76% identity with the Jiroft isolate; identities of 75–79% with TYLCV‐IR[IR:Ira:98] were observed in every case, and 59–62% identity with ToLCIRV‐[IR:Ira]. The IR nucleotide sequences of Iranian isolates showed 92–93% identity with TYLCV‐IL[IL:Reo:86], except the Jiroft isolate (75%). The CP and IR sequence analyses suggested that eight Iranian TYLCV isolates probably differ from ToLCIRV‐[IR:Ira]. Based on IR sequence comparisons and phylogenetic analyses, the Iranian isolates were divided into two groups. The first major group (A), consists of seven virus isolates, was most closely related to TYLCV‐IL[IL:Reo:86], and relatively divergent from TYLCV‐IR [IR:Ira:98] and ToLCIRV‐[IR:Ira]. However, the Jiroft isolate from group B did not show high similarity with TYLCV‐IR[IR:Ira:98], ToLCIRV‐[IR:Ira], and TYLCV‐IL[IL:Reo:86], suggesting that the isolate may be a divergent variant. The differences are in a range that suggests different strains or species from TYLCV‐IR[IR:Ira:98] and ToLCIRV‐[IR:Ira] are probably associated with tomato yellow leaf curl disease in Iran. 相似文献
3.
以番茄为试验材料,研究番茄黄化曲叶病毒(TYLCV)侵染对植株叶片叶绿素含量、净光合速率、气孔导度、胞间CO2浓度和叶绿体超微结构的影响.结果表明:TYLCV侵染番茄后,叶片叶绿素a、b以及总叶绿素含量分别下降50.2%、24.19%和43.84%,叶片净光合速率和气孔导度分别下降43.28%、27.07%,胞间CO2浓度增加13.04%.与健康叶片相比,叶绿体变形,叶绿体基质片层大部分消解,基粒结构消失,叶绿体外膜和内膜剥离,质壁分离和细胞膜内陷,细胞器消解.研究表明,TYLCV侵染破坏了番茄叶片的叶绿体结构,严重影响番茄叶片的光合作用. 相似文献
4.
Eui-Joon Kil Hee-Seong Byun Hyunsik Hwang Kyeong-Yeoll Lee Hong-Soo Choi Chang-Seok Kim Sukchan Lee 《The Plant Pathology Journal》2021,37(6):641
Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants. 相似文献
5.
Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus Invade South-east Coast of China 总被引:2,自引:0,他引:2
An epidemic outbreak of severe yellow leaf curl disease was reported in field grown tomato within Zhejiang Province of China in the autumn–winter cropping season of 2006. A molecular diagnostic survey was carried out based on comparisons of partial and complete viral DNA sequences. Comparison of partial DNA‐A sequences amplified with degenerate primers specific for begomoviruses confirmed the presence of two types of begomoviruses. The complete DNA sequences of five isolates, corresponding to the two types, were determined. Sequence comparisons and phylogenetic analysis revealed that they correspond to two previously identified begomoviruses, Tomato yellow leaf curl virus and Tomato leaf curl Taiwan virus. The satellite DNAβ molecule was not detected in these samples by either PCR or Southern blot hybridization analysis. There has been no previous report of geminivirus disease incidence in Zhejiang Province, indicating that the introduction of these two tomato infecting geminiviruses into the agro‐ecological zone of South‐eastern China is a fairly recent event. The implications for disease control are discussed. 相似文献
6.
Molecular Evidence for the Association of Tomato leaf curl Gujarat virus with a Leaf Curl Disease of Phaseolus vulgaris L. 下载免费PDF全文
Naimuddin Kamaal Mohammad Akram Aniruddha Kumar Agnihotri 《Journal of Phytopathology》2015,163(1):58-62
A leaf curl disease with symptoms typical of begomoviruses was observed in bean (Phaseolus vulgaris) at the Main Research Farm of the Indian Institute of Pulses Research, Kanpur, India. Infected plants had severe distortion of leaves and the plants were unproductive. PCR indicated the involvement of French bean leaf curl virus (JQ866297), a recently described Begomovirus, and Tomato leaf curl Gujarat virus (ToLCGV). The full‐length genome of ToLCGV associated with leaf curl disease of bean was 2757 nucleotides long and had maximum identity (97–98%) with seven isolates of ToLCGV (AY234383, AF449999, EU573714, GQ994098, AY190290, FR819708, AF413671) and is designated as Tomato leaf curl Gujarat virus‐(IN:Knp:Bean:2013) (KF440686). To the best of our knowledge, this is the first record of ToLCGV infecting a leguminous host, P. vulgaris. 相似文献
7.
云南番茄曲叶病是由烟草曲茎病毒引起的 总被引:9,自引:0,他引:9
从云南省德宏田间表现曲叶症状的番茄植株上分离到病毒分离物Y41,采集的带病植株在实验室可经烟粉虱(Bemisia tabaci)传播到健康的番茄.用针对非洲木薯花叶病毒(ACMV)、印度木薯花叶病毒(ICMV)及秋葵曲叶病毒(OLCV)的15种单抗对病样进行TAS-ELISA检测,结果表明,番茄曲叶病是由菜豆金色花叶病毒属(Begomovirus)病毒引起的,但其抗原表位型与我国广西报道的中国番茄黄化曲叶病毒(TYLCCV)不同.对Y41进行DNA-A全序列测定和分析表明,Y41 DNA-A全长2743个核苷酸,共编码6个ORF,其中病毒链编码AV1和AV2两个ORF,互补链编码AC1、AC2、AC3和AC4 4个ORF.对Y41及其它双生病毒CP进行同源性比较及系统进化关系分析表明,Y41属于"旧世界"的粉虱传双生病毒,与我国报道的烟草曲茎病毒(TCSV)及印度报道的番茄曲叶Karnataka病毒(ToLCKV)同源性最高,达到98.8%.进一步比较基因组发现,Y41与TCSV AV1、AV2、AC1、AC2、AC3、AC4各ORF同源性分别为98.8%、96.6%、86.4%、93.3%、89.6%和89.7%,基因间隔区(IR)、DNA-A同源性分别为92.1%和93.4%,且在基因间隔区内含有相似的重复子序列及排列方式.这些结果表明:Y41是TCSV在自然条件下侵染番茄的一个分离物. 相似文献
8.
José Angel Herrera‐Vásquez Deibis Ortega Ana Belkis Romero Salvatore Davino Luis Carlos Mejía Stefano Panno Mario Davino 《Journal of Phytopathology》2016,164(2):102-113
The key regions in Panama involved in open field‐ and greenhouse‐grown commercial tomato production, including the Chiriquí, Veraguas, Herrera, Los Santos, Coclé and Panama Oeste provinces, were surveyed for the incidence and distribution of begomoviruses in the growing seasons of 2011 and 2012. The surveys took place in 14 of the 51 districts of the above‐mentioned provinces and comprised all relevant tomato production areas of the provinces. A total of 28 tomato plots were surveyed. The exact location of each plot was geo‐referenced using a hand‐held Global Positioning System unit. In total, 319 individual tomato plants (181 in 2011 and 138 in 2012) were sampled. Plants displayed diverse combinations of virus‐like symptoms of different severity, including necrosis, yellowing, mosaic, mottling, rolling, curling, distortion and puckering of leaves, reduced leaf size, and stunted growth. DNA was extracted from each plant for a subsequent polymerase chain reaction (PCR) analysis, using two sets of degenerate primers able to detect members of the genus Begomovirus. The samples displaying a positive reaction were subsequently analysed with specific primer pairs to identify the affecting begomoviruses. A total of 42.3% of all collected samples showed a positive signal to PCRs. Three begomovirus species were detected with the species‐specific set of primers; in particular, in the samples obtained in 2011, Potato yellow mosaic Panama virus (PYMPV), Tomato leaf curl Sinaloa virus (ToLCSiV) and Tomato yellow mottle virus (TYMoV) were detected, while in the 2012 samples, only PYMPV and ToLCSiV were found. To our knowledge, this is the first reported incidence of ToLCSiV and TYMoV in Panamanian tomato crops. 相似文献
9.
Abstract To better understand the etiology of begomovirus epidemics in regions under invasion we need to know how indigenous and invasive whitefly vectors respond to virus infection. We investigated both direct and indirect effects of infection with Tomato yellow leaf curl virus (TYLCV) on the performance of the invasive Q biotype and the indigenous Asian ZHJ2 biotype of whitefly Bemisia tabaci. The Q biotype performed better than the ZHJ2 biotype on either uninfected or virus‐infected tomato plants. However, virus‐infection of host plants did not, or only marginally affected, the performance of either biotype of whiteflies in terms of fecundity, longevity, survival, development and population increase. Likewise, association of the vectors with TYLCV did not affect fecundity and longevity of the Q or ZHJ2 biotypes on cotton, a non‐host of TYLCV. These results indicate that the alien Q biotype whitefly, but not the indigenous ZHJ2 biotype, is likely to become the major vector of TYLCV in the field and facilitate virus epidemics. 相似文献
10.
Samretwanich Kloyjai Chiemsombat Pissawan Kittipakorn Kruapan Ikegami Masato 《World journal of microbiology & biotechnology》2000,16(4):401-403
Geminivirus associated with yellow leaf disease of cantaloupe plants was detected using polymerase chain reaction (PCR) with geminivirus-specific degenerate primers which anneal within the AC1 ORF (replication initiator protein gene) and the AV1 ORF (coat protein gene). A DNA fragment of 1.2 kbp was amplified, cloned and sequenced. The 32-base stem loop region was found in the amplified fragment. This included the conserved nonanucleotide sequence TAATATTAC present in all geminiviruses. The nucleotide sequence of the intergenic region (IR) was compared with 28 whitefly-transmitted geminiviruses. The geminivirus associated with yellow leaf disease of cantaloupe plants showed 96.2% sequence identity with DNA A of tomato leaf curl geminivirus from India (ToLCV-In2). These data suggest that cantaloupe yellow leaf disease was caused by ToLCV. 相似文献
11.
Venkatesan G. Sengoda Wen‐Shi Tsai Robert C.
De La Peña Sylvia K. Green Lawrence Kenyon Jackie Hughes 《Journal of Phytopathology》2012,160(5):213-219
Transgenic tomato plants expressing full‐length (CPV1) and truncated coat protein (CP) gene (CPV2) of Tomato leaf curl Taiwan virus (ToLCTWV) were generated by Agrobacterium‐mediated transformation. Transgene integration and expression was confirmed by PCR and Southern blotting and Northern analysis, respectively. Resistance was evaluated both in plants of T0 and T1 progenies using viruliferous whiteflies under two different inoculum pressures (10–15 and 40–50 whiteflies/plant). Upon inoculation with ToLCTWV using viruliferous whiteflies, various levels of phenotypic reaction were observed. No complete resistance was observed in any of the plants tested. The reaction of the transgenic tomato lines carrying full‐length and truncated CP gene to ToLCTWV phenotype was (i) susceptible as non‐transgenic control, (ii) delayed symptom expression, (iii) complete susceptible (from delayed symptom expression phenotype) and (iv) recovered phenotype (either plants from symptom expression as non‐transgenic plants or delayed symptom expression phenotype). Dot blot quantification of the ToLCTWV using the replicase gene as a probe revealed that the recovered phenotypes accumulated a low level of ToLCTWV, and virus concentration was gradually reduced from 10 to 14 weeks postinoculation. The possible mechanisms of CP‐mediated resistance are discussed. 相似文献
12.
Accessions of wild Lycopersicon spp. and selected Fl hybrid tomato cultivars were compared for their resistance to three whitefly-transmissible geminiviruses: Indian tomato leaf curl virus (ITmLCV) and tomato yellow leaf curl viruses from Sardinia (TYLCV-Sar) and Senegal (TYLCV-Sen). The resistance of different plant lines was expressed in different ways but in most instances a given line reacted similarly to graft inoculation with the three viruses. L. pimpinellifolium LA1478 produced as much virus antigen, assessed by triple antibody sandwich-ELISA, as the susceptible cv. Moneymaker but developed only very mild symptoms and is therefore tolerant of infection. In L. hirsutum LA1777 and L. peruvianum CMV-INRA, very mild or no symptoms developed but antigen concentrations were substantially less than in Moneymaker. L. chilense LA1969 remained symptomless and its antigen concentration was < 1% of that in Moneymaker. Symptoms were mild or barely evident in the Fl hybrid cultivars. Cultivars Tyking and Fiona had antigen concentrations about 5–10% of those of Moneymaker, whereas TY20, Top 21 and Tyger had intermediate antigen concentrations. In a few instances, the extent to which virus accumulation was restricted depended on the challenge virus. Accumulation of TYLCV-Sen in TY20, Top 21 and Tyger was less affected than that of the other two viruses, and accumulation of TYLCV-Sar in accessions LA1777 and CMV-INRA was less affected than that of TYLCV-Sen or ITmLCV. Tissue-printing tests showed that ITmLCV and TYLCV-Sen antigens were confined to phloem tissue. In Tyking, the number of virus antigen-containing phloem traces and the antigen content of individual traces were less than in Moneymaker but the partitioning of antigen between internal and external phloem was unaffected. 相似文献
13.
The combinational analysis of polymerase chain reaction and restriction enzyme analysis (PCR‐RE) to distinguish six Tomato yellow leaf curl virus (TYLCV) isolates from five countries was developed. Tomato yellow leaf curl virus has spread from the Middle East to Western Europe, Central America and Eastern Asia, and occurs on infected crops such as tomatoes, peppers, cucurbits and beans. Tomato yellow leaf curl virus isolates from Jordan (TYLCV‐Mld[Jo:Cuc] and TYLCV‐IL[Jo:Cuc]), Israel (TYLCV‐IL[IL:Reo:86]), Spain (TYLCV‐Mld[ES72/97]), USA (TYLCV‐IL[US:F10:04]) and Korea (TYLCV‐KR) were collected, and the sequences of the six isolates were analysed to distinguish them by PCR‐RE combination analysis. Oligonucleotide primers for the six TYLCV isolates were designed to amplify approximately 740 base pairs including the intergenic region (IR) and parts of V1 and V2 ORF. Unique restriction enzyme sites were analysed to identify isolate‐specific restriction enzyme sites on the PCR products of each isolate. Three enzymes (DdeI, FauI and BssSI) were selected by in silico analysis, and then, the PCR products following the serial digestion of each restriction enzyme were separated by agarose gel electrophoresis to distinguish the TYLCV isolates. Taken together, the PCR‐RE combination analysis by serial digestion with three restriction enzymes could be a useful method for distinguishing the six isolates. 相似文献
14.
Differential indirect effects of two plant viruses on an invasive and an indigenous whitefly vector: implications for competitive displacement 总被引:4,自引:0,他引:4
The role of vector–begomovirus–plant interactions in the widespread invasion by some members of the whitefly species complex Bemisia tabaci is poorly understood. The invasive B biotype of B. tabaci entered China in the late 1990s and had become the predominant or only biotype of the whitefly in many regions of the country by 2005–2006. Meanwhile epidemics of begomoviruses have been observed in many crops including tomato for which Tomato yellow leaf curl China virus (TYLCCNV) and Tomato yellow leaf curl virus (TYLCV) have been identified as two major disease-causing agents. Here, we conducted laboratory experiments to compare the performance of the invasive B and indigenous ZHJ1 whitefly biotypes on uninfected, TYLCCNV-infected and TYLCV-infected plants of tomato cv. Hezuo903, a cultivar that has been widely cultivated in many regions of China. The infection of tomato plants by either of the viruses had no or only marginal effects on the development, survival and fecundity of the B biotype. In contrast, survival and fecundity of the ZHJ1 biotype were significantly reduced on virus-infected plants compared to those on uninfected plants. Populations of the B biotype on uninfected and TYLCCNV-infected plants increased at similar rates, whereas population increase of the ZHJ1 biotype on TYLCCNV-infected plants was affected adversely. These asymmetric responses to virus infection of tomato plants between the B and ZHJ1 biotypes are likely to offer advantages to the B biotype in its invasion and displacement of the indigenous biotype. 相似文献
15.
Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan 下载免费PDF全文
A progressive displacement of Tomato leaf curl Taiwan virus (ToLCTWV) by Tomato yellow leaf curl Thailand virus (TYLCTHV) from 2005 to 2009 has been recorded in tomato fields in Taiwan. Begomoviruses are exclusively transmitted by Bemisia tabaci complex, so we hypothesised that the displacement of tomato begomoviruses in the fields may be due to the invasion of a new virus/vector and the different transmission efficiencies of the viruses by the vectors. The objective of this research was to compare the transmission efficiency of TYLCTHV and ToLCTWV by the B and Q biotypes of B. tabaci complex. When transmission efficiency, virus retention in vector, and latent period for vector transmission were compared, the B biotype transmitted TYLCTHV and ToLCTWV more efficiently than did the Q biotype, and transmitted TYLCTHV more efficiently than ToLCTWV. The B biotype retained both viruses and remained infective throughout adulthood, but the Q biotype did not keep its infectivity, although it did retain both viruses lifelong. The B biotype transmitted TYLCTHV and ToLCTWV with the shortest latent period. In summary, B. tabaci B biotype and TYLCTHV is the best alliance for disease transmission, so we conclude that this may be one of drivers responsible for the displacement of ToLCTWV by TYLCTHV in tomato fields in Taiwan. 相似文献
16.
【背景】番茄黄化曲叶病毒(TYLCV)是由媒介昆虫烟粉虱传播的一种双生病毒,对蔬菜及烟草等经济作物造成严重危害。前人资料表明,该病毒于2006年传人我国南方地区,2007年传人山东省,2008年后在山东各地逐渐蔓延扩散。【方法】为了考证TYLcV传人山东省的时间,本研究利用mtCOI基因对于2005和2006年7—8月份在山东省不同地区作物上共采集的15份烟粉虱样品进行了生物型鉴定,并进一步检测了烟粉虱携带TYLCV情况,同时对PCR扩增产物进行了测序分析。【结果】2005年的4份样品烟粉虱生物型均为B型,均不携带TYLCV。2006年的11份烟粉虱样品为B型与Q型混合样品,其中,2份烟粉虱样品检测到TYLCV,进一步证实该病毒为TYLCV。【结论与意义】本研究首次证实了TYLCV早在2006年就已经传入山东省。研究结果不仅对于防控该病毒具有重要指导意义,而且对于其入侵生物学研究也具有重要参考价值。 相似文献
17.
Virus‐like chlorotic symptoms were observed on tomato plants, cv. Velocity, grown in a greenhouse, region of Plovdiv. Samples collected from the leaves with interveinal yellowing and with initial interveinal chlorosis were tested for virus presence. Only the samples collected from the upper leaves with slight interveinal chlorosis were positive for Tomato infectious chlorosis virus (TICV) in indirect ELISA. Further, RT‐PCR analysis with specific primers for Tomato chlorosis virus (ToCV) heat shock protein 70, for TICV heat shock protein 70 and for TICV minor capsid protein was positive for TICV in all tested samples. No signals were obtained with primers for ToCV. Phylogenetic analysis showed that the Bulgarian sequence of Hsp70 and a sequence of Greek isolate clustered together having the highest resampling score. Regarding CPm, the Bulgarian isolate was more relevant to the French isolate. The obtained results from phylogenetic analysis supported the idea of a close relationship between the Bulgarian and Greek isolates. 相似文献
18.
Transmission of tomato leaf curl geminiviruses by Bemisia tabaci: effects of virus isolate and vector biotype 总被引:1,自引:0,他引:1
Cultures of Bemisia tabaci from Ivory Coast (IC), Pakistan (PK) and USA (US B-type) were compared for the frequency with which they transmitted three tomato geminivirus isolates: Indian tomato leaf curl virus from Bangalore (ITmLCV), and tomato yellow leaf curl viruses from Nigeria (TYLCV-Nig) and Senegal (TYLCV-Sen). Frequency of transmission from tomato to tomato depended both on the whitefly culture and the virus isolate. US B-type and IC whiteflies transmitted TYLCV-Sen more frequently than ITmLCV whereas PK whiteflies transmitted ITmLCV more frequently than TYLCV-Sen. US B-type whiteflies transmitted both viruses four to nine times more frequently than IC whiteflies. TYLCV-Nig was transmitted rarely by US B-type and not at all by IC whiteflies. Previous work indicates that the geminivirus coat protein controls vector transmissibility. The differential adaptation of TYLCV-Sen to transmission by US B-type whiteflies and of ITmLCV to PK whiteflies was associated with a large difference in epitope profile of the coat proteins of the two viruses. Also, the readily transmissible TYLCV-Sen differed appreciably in epitope profile from the poorly transmissible TYLCV-Nig, which reached a consistently greater concentration in source tissues but lacked epitope 18. However, the lack of epitope 18 in ITmLCV did not prevent its transmission by US B-type whiteflies. Differences in frequency and specificity of geminivirus transmission by whitefly cultures from different countries therefore were associated with differences among epitope profiles of the coat proteins of the viruses, but the structural features of the proteins that control transmission remain to be determined. 相似文献
19.
Complete nucleotide sequences of the infectious cloned DNA components (DNA 1 and DNA 2) of mung bean yellow mosaic virus (MYMV) were determined. MYMV DNA 1 and DNA 2 consists of 2,723 and 2,675 nucleotides respectively. DNA 1 and DNA 2 have little sequence similarity except for a region of approximately 200 bases which is almost identical in the two molecules. Analysis of open reading frames revealed nine potential coding regions for proteins of mol. wt. > 10,000, six in DNA 1 and three in DNA 2. The nucleotide sequence of MYMV DNA was compared with that of bean golden mosaic virus (BGMV), tomato golden mosaic virus (TGMV) and African cassava mosaic virus (ACMV). The 200-base region common to the two DNAs of each virus had little sequence similarity, except for a highly conserved 33-36 base sequence potentially capable of forming a stable hairpin structure. The potential coding regions in the MYMV DNAs had counterparts in the BGMV, TGMV and ACMV, suggesting an overall similarity in genome organization, except for absence of 1L3 in MYMV DNA 1. The most highly conserved ORFs, MYMV 1R1, BGMV 1R1, TGMV 1R1 and ACMV 1R1, are the putative genes for the coat proteins of MYMV, BGMV, TGMV and ACMV, respectively. MYMV 1L1 has also a high degree of sequence similarity with BGMV 1L1, TGMV 1L1 and ACMV 1L1. 相似文献
20.
利用多重PCR反应同时筛选番茄Cf-9和Tm-1基因 总被引:3,自引:0,他引:3
利用同一PCR反应体系,对分别与番茄抗叶霉病的Cf-9基因和抗番茄烟草花叶病毒病的Tm-1基因紧密连锁的PCR标记进行了同时扩增筛选,扩增的特异性片段与单引物扩增片段吻合。其中与Cf-9基因紧密连锁的CAPs标记在抗感试材均可扩增出560bp的特异片段,且都存在TaqⅠ酶切位点,抗病基因型酶切后分别产生了450bp、330bp和290bp的不同特异性片段,而感病基因型试材酶切后产生450bp和290bp的特异性片段;与Tm-1基因紧密连锁的SCAR标记为显性标记,只有抗病试材产生750bp的特异片段,不能被TaqⅠ酶切。经反复验证,结果稳定准确,可用于在同一PCR反应体系中对两个抗病基因进行同时筛选鉴定。该体系的建立不仅省时、省工、节省费用,而且可用于苗期辅助选育,加快番茄抗病育种进程。 相似文献