首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent studies of human immunodeficiency virus (HIV)-specific CD8(+) T cells have focused on responses to single, usually HLA-A2-restricted epitopes as surrogate measures of the overall response to HIV. However, the assumption that a response to one epitope is representative of the total response is unconfirmed. Here we assess epitope immunodominance and HIV-specific CD8(+) T-cell response complexity using cytokine flow cytometry to examine CD8(+) T-cell responses in 11 HLA-A2(+) HIV(+) individuals. Initial studies demonstrated that only 4 of 11 patients recognized the putative immunodominant HLA-A2-restricted p17 epitope SLYNTVATL, suggesting that the remaining subjects might lack significant HIV-specific CD8(+) T-cell responses. However, five of six SLYNTVATL nonresponders recognized other HIV epitopes, and two of four SLYNTVATL responders had greater responses to HIV peptides restricted by other class I alleles. In several individuals, no HLA-A2-restricted epitopes were recognized, but CD8(+) T-cell responses were detected to epitopes restricted by other HLA class I alleles. These data indicate that an individual's overall CD8(+) T-cell response to HIV is not adequately represented by the response to a single epitope and that individual major histocompatibility complex class I alleles do not predict an immunodominant response restricted by that allele. Accurate quantification of total HIV-specific CD8(+) T-cell responses will require assessment of the response to all possible epitopes.  相似文献   

2.
The CTL response to HIV was analyzed in humans and in mice. By using a novel and strictly autologous lymphocyte culture system, human CTL lines were established with PBL from seropositive asymptomatic donors and from patients suffering from AIDS or presenting AIDS-related complex. CTL from HLA-A2 donors recognize and kill murine P815 mastocytoma cells doubly transfected with the human HLA-A2 gene and the HIV env gene; they also kill HLA-compatible human macrophages infected with HIV. CTL specific for the HIV env Ag were also generated in BALB/c mice by immunization with syngeneic murine cells transfected with the HIV env gene. Human and murine HIV-immune CTL populations belong to the CD8 subset of T lymphocytes and are restricted by class I HLA or H-2 transplantation Ag, respectively, in the recognition of HIV env Ag. The two different experimental systems presented here can be used to study CD8 lymphocyte immunity against HIV. The murine model of CTL immunity offers the additional advantage of avoiding the manipulation of infectious virus isolates.  相似文献   

3.
Epitope-based vaccines designed to induce CTL responses specific for HIV-1 are being developed as a means for addressing vaccine potency and viral heterogeneity. We identified a set of 21 HLA-A2, HLA-A3, and HLA-B7 restricted supertype epitopes from conserved regions of HIV-1 to develop such a vaccine. Based on peptide-binding studies and phenotypic frequencies of HLA-A2, HLA-A3, and HLA-B7 allelic variants, these epitopes are predicted to be immunogenic in greater than 85% of individuals. Immunological recognition of all but one of the vaccine candidate epitopes was demonstrated by IFN-gamma ELISPOT assays in PBMC from HIV-1-infected subjects. The HLA supertypes of the subjects was a very strong predictor of epitope-specific responses, but some subjects responded to epitopes outside of the predicted HLA type. A DNA plasmid vaccine, EP HIV-1090, was designed to express the 21 CTL epitopes as a single Ag and tested for immunogenicity using HLA transgenic mice. Immunization of HLA transgenic mice with this vaccine was sufficient to induce CTL responses to multiple HIV-1 epitopes, comparable in magnitude to those induced by immunization with peptides. The CTL induced by the vaccine recognized target cells pulsed with peptide or cells transfected with HIV-1 env or gag genes. There was no indication of immunodominance, as the vaccine induced CTL responses specific for multiple epitopes in individual mice. These data indicate that the EP HIV-1090 DNA vaccine may be suitable for inducing relevant HIV-1-specific CTL responses in humans.  相似文献   

4.
It is becoming increasingly clear that any human immunodeficiency virus (HIV) vaccine should induce a strong CD8(+) response. Additional desirable elements are multispecificity and a focus on conserved epitopes. The use of multiple conserved epitopes arranged in an artificial gene (or EpiGene) is a potential means to achieve these goals. To test this concept in a relevant disease model we sought to identify multiple simian immunodeficiency virus (SIV)-derived CD8(+) epitopes bound by a single nonhuman primate major histocompatibility complex (MHC) class I molecule. We had previously identified the peptide binding motif of Mamu-A*01(2), a common rhesus macaque MHC class I molecule that presents the immunodominant SIV gag-derived cytotoxic T lymphocyte (CTL) epitope Gag_CM9 (CTPYDINQM). Herein, we scanned SIV proteins for the presence of Mamu-A*01 motifs. The binding capacity of 221 motif-positive peptides was determined using purified Mamu-A*01 molecules. Thirty-seven peptides bound with apparent K(d) values of 500 nM or lower, with 21 peptides binding better than the Gag_CM9 peptide. Peripheral blood mononuclear cells from SIV-infected Mamu-A*01(+) macaques recognized 14 of these peptides in ELISPOT, CTL, or tetramer analyses. This study reveals an unprecedented complexity and diversity of anti-SIV CTL responses. Furthermore, it represents an important step toward the design of a multiepitope vaccine for SIV and HIV.  相似文献   

5.
A Carmichael  X Jin    P Sissons 《Journal of virology》1996,70(12):8468-8476
Major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL) are part of the cellular immune response to persistent virus infections. Candidate vaccines against human immunodeficiency virus type 1 (HIV-1) should elicit broad cross-reactive immunity to confer protection against different strains of HIV-1. As it is likely that candidate vaccines will include the envelope gene product Env, we determined the proportion of CTL clones which recognized variable and conserved determinants in three env variants during natural infection. Limiting dilution analysis was used to characterize numerous short-term CTL clones derived from peripheral blood of HIV-1-infected subjects, using split-well analysis to assay cytotoxicity against target cells expressing gp160env of HIV-1 strains IIIB, MN, and RF. In 9 of 12 HIV-1-infected subjects, at the clonal level most env-specific CTL recognized determinant(s) within one env variant but not in the other variants. In some subjects, CTL recognized multiple nonconserved determinants in different variants. The pattern of recognition of different env variants was relatively stable over time. In most of the patients studied, the proportion of CTL which showed cross-recognition of conserved determinants shared among the three strains was low. Two novel CTL epitopes within gp41 were identified by using 15-mer peptides of the HIV-SF2 sequence. When specific peptide was used to stimulate CTL precursors in vitro, the frequency of peptide-specific CTL precursors was very high, but the CTL elicited by this stimulation were highly strain specific. We conclude that the use of a single HIV env variant to detect CTL activity can underestimate the magnitude and complexity of the env-specific CTL response. The low prevalence of CTL clones which show cross-recognition of conserved determinants may have implications for immunization strategies based solely on env; to elicit broadly cross-reactive CTL other, more conserved viral antigens are likely to be needed in addition to env. Because of its capacity to distinguish CTL responses against different virus strains, limiting dilution analysis is particularly appropriate to quantitate the immune responses generated by candidate env-based vaccines.  相似文献   

6.
CD8+ T cells play an important role in early HIV infection. However, HIV has the capacity to avoid specific CTL responses due to a high rate of mutation under selection pressure. Although the HIV proteins, gag and pol, are relatively conserved, these sequences generate low-affinity MHC-associated epitopes that are poorly immunogenic. Here, we applied an approach that enhanced the immunogenicity of low-affinity HLA-A2.1-binding peptides. The first position with tyrosine (P1Y) substitution enhanced the affinity of HLA-A2.1-associated peptides without altering their antigenic specificity. More importantly, P1Y variants efficiently stimulated in vivo native peptide-specific CTL that also recognized the corresponding naturally processed epitope. The potential to generate CTL against any low-affinity HLA-A2.1-associated peptide provides us with the necessary technique for identification of virus cryptic epitopes for development of peptide-based immunotherapy. Therefore, identification and modification of the cryptic epitopes of gal and pol provides promising candidates for HIV immunotherapy dependent upon efficient presentation by virus cells. Furthermore, this may be a breakthrough that overcomes the obstacle of immune escape caused by high rates of mutation. In this study, bioinformatics analysis was used to predict six low-affinity cryptic HIV gag and pol epitopes presented by HLA-A*0201. A HIV compound multi-CTL epitope gene was constructed comprising the gene encoding the modified cryptic epitope and the HIV p24 antigen, which induced a strong CD8+ T cell immune response regardless of the mutation. This approach represents a novel strategy for the development of safe and effective HIV prophylactic and therapeutic vaccines.  相似文献   

7.
CD8(+) cytotoxic T lymphocyte (CTL) response is critical for controlling the infection of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Since only a few CD8 antigens have been described in Chagas disease patients, the identification of new class I-restricted epitopes is urgently needed for the development of immunotherapies against T. cruzi infection. In this study, bioinformatic methods were used to predict HLA-A?02:01-binders, and 30 peptides were selected, synthesized and tested for HLA-A?02:01 binding. Among them, sixteen peptides with medium-to-high affinity were assayed for their recognition by CTL from HSP70-immunized or T. cruzi-infected transgenic B6-A2/K(b) mice. Our results show that four immunodominant epitopes (HSP70(210-8), HSP70(255-63), HSP70(316-24) and HSP70(345-53)) are contained in the T. cruzi HSP70 antigen. Indeed two of them (HSP70(210-8) and HSP70(316-24)) were also recognized by CTL of HLA-A?02:01(+) Chagas disease patients, indicating that these peptides are processed and displayed as MHC class I epitopes during the natural history of T. cruzi infection. The HLA-A?02:01 restriction was evidenced using peptide-pulsed K562-A2 cells as antigen-presenting cells. Both cytotoxic and cytokine-secreting activities were detected in response to the former two peptides and, moreover, 10/12 patients (83%) recognized at least one of these two HSP70-derived CD8(+) epitopes.  相似文献   

8.
HLA-A2.1-associated peptides, extracted from human melanoma cells, were used to study epitopes for melanoma-specific HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) by epitope reconstitution, active peptide sequence characterization and synthetic peptide verification. CTL were generated from tumor-involved nodes by in vitro stimulation, initially with autologous melanoma cells and subsequently with allogeneic HLA-A2.1 positive melanoma cells. The CTLs could lyse autologous and aUogeneic HLA-A2. 1 positive melanomas, but not HLA-A2.1 negative melanomas or HLA-A2.1 positive non-melanomas. The lysis of melanomas could be inhibited by anti-CD3, anti-HLA class I and anti-HLA-A2.1 monoclonal antibodies. HLA-A2.1 molecules were purified from detergent-solubilized human melanoma cells by immunoaffinity column chromatography and further fractionated by reversed phase high performance liquid chromatography. The fractions were assessed for their ability to reconstitute melanoma-specific epitopes with HLA-A2.1 positive antigen-processing mutant T2 cells. Three reconstitution peaks were observed in lactate dehydrogenase release assay. Mass spectrometry and ion-exchange high performance liquid chromatography analysis were used to identify peptide epitopes. Peptides with a mass-to-charge ratio of 948 usually consist of nine amino acid residues. The data from reconstitution experiments confirmed that the synthetic peptides contained epitopes and that the peptides associated with HLA-A2.1 and recognized by melanoma-specific CTL were present in these different melanoma cells. These peptides could be potentially exploited in novel peptide-based antitumor vaccines in immunotherapy for CTL.  相似文献   

9.
Epitope mapping of a MHC class I-restricted cytotoxic T cell response to nef, a regulatory protein of HIV, was performed with fresh PBMC from HIV-seropositive donors and target cells pulsed with a panel of overlapping peptides of the nef protein. These nef-specific CTL recognized a synthetic peptide of 10 residues derived from a nonamphipathic, highly conserved region of the nef protein in association with the HLA A3.1 molecule. Using human cell transfectants expressing mutations of the A3 molecule, we demonstrated that the amino acid at position 152 of the A3.1 molecule appears to be critical for detection of this response. Thus, rapid analysis of the epitopes of HIV proteins stimulating CTL responses can be achieved using a combination of fresh donor PBMC and target cells pulsed with synthesized peptides.  相似文献   

10.
11.
Cytotoxic T lymphocytes play a central role in the control of persistent human CMV (HCMV) infection and reactivation. In healthy virus carriers, the specific CD8(+) CTL response is almost entirely directed against the virion tegument protein pp65 and/or the 72-kDa major immediate early protein, IE1. Studies that included a large panel of HCMV(+) donors suggested that immunorelevance of pp65 and IE1 was directly related with individual HLA haplotype difference. Nevertheless, there are no data on the incidence of HCMV natural polymorphism on virus-specific CTL responses. To assess the impact of IE1 polymorphism on CTL response, we have sequenced in 103 clinical isolates the DNA region corresponding to IE1(315-324), an immunodominant epitope presented by HLA-A*0201 molecules. Seven peptidic variants were found with extensive difference in their frequencies. The response of four HLA-A*0201-restricted anti-IE1 T lymphocyte clones, which were previously generated from one donor against autologous B lymphoblastoid cells expressing a recombinant clinical variant of IE1, was then evaluated using target cells loaded with mutant synthetic peptides or expressing rIE1 variants. One of four clones, which have been sorted 19 times among 22 clones targeted against IE1(315-324), recognized six of the seven tested variant epitopes. All three other clones showed distinct reactivity patterns to target cells loaded with the different mutant peptides or expressing IE1 variants. Therefore, in the HLA-A2 context, clonal expansions of anti-IE1 memory CTLs may confer a protection against HCMV successive infections and reactivations by killing cells presenting most of the naturally occurring IE1(315-324) epitope variants.  相似文献   

12.
Two groups of human and murine cytotoxic T lymphocyte (CTL) clones specific for human leukocyte antigen (HLA)-A2 or -B7 can be distinguished based on their ability to kill murine transfectants expressing these molecules. The clones which do not recognize murine transfectants exhibited greatly reduced conjugate formation with these cells, indicating that the inability to lyse these cells occurs in recognition and binding. No systematic differences in inhibitory titer between the two types of CTL clones were seen with anti-CD8 (Lyt-2), anti-LFA-1, or monoclonal antibodies against HLA class I molecules. However, blocking with anti-HLA class I monoclonal antibodies suggested that different CTL clones recognized spatially separate epitopes on HLA-A2 and -B7. In addition, a correlation between the inability to recognize murine transfectants and fine specificity was seen. Eight of nine clones which did not lyse murine transfectants also failed to recognize human cells expressing HLA-A2.2 or -A2.3. In contrast only 5 of 12 clones which lysed transfectants failed to recognize the variant molecules. Analogous data were obtained with human CTL clones raised against HLA-A2.1. These findings suggest that CTL clones that do not lyse murine cells expressing appropriate antigens recognize epitopes that have been altered or lost as a consequence of expression on the murine cell surface. It is suggested that the loss of HLA-associated epitopes on the murine cell surface may be due to differences between mouse and human cells in the processing or presentation of class I-associated peptides.  相似文献   

13.
The Ag specificity of the CTL response against CMV is directed almost entirely to a single CMV tegument protein, the phosphoprotein pp65. We report the identification of three peptides derived from the protein pp65 that displayed a high or intermediate binding to HLA-A*0201 molecules, which were also able to induce an in vitro CTL response in peripheral blood lymphocytes from CMV seropositive individuals. The peptide-specific CTLs generated were capable of recognizing the naturally processed pp65 either presented by CMV-infected cells or by cells infected with an adenovirus construct expressing pp65 in an HLA-A*0201-restricted manner. Thus, we were able to demonstrate responses to subdominant CTL epitopes in CMV-pp65 that were not detected in polyclonal cultures obtained by conventional stimulations. We also found that the amino acid sequences of the three peptides identified as HLA-A*0201-restricted CTL epitopes were conserved among different wild-type strains of CMV obtained from renal transplant patients, an AIDS patient, and a congenitally infected infant, as well as three laboratory strains of the virus (AD169, Towne and Davis). These observations suggest that these pp65 CTL peptide epitopes could potentially be used as synthetic peptide vaccines or for other therapeutic strategies aimed at HLA-A*0201-positive individuals, who represent approximately 40% of the European Caucasoid population. However, strain variation must be taken in consideration when the search for CTL epitopes is extended to other HLA class I alleles, because these mutations may span potential CTL epitopes for other HLA molecules, as it is described in this study.  相似文献   

14.
The androgen receptor (AR) is a hormone receptor that plays a critical role in prostate cancer, and depletion of its ligand has long been the cornerstone of treatment for metastatic disease. Here, we evaluate the AR ligand-binding domain (LBD) as an immunological target, seeking to identify HLA-A2-restricted epitopes recognized by T cells in prostate cancer patients. Ten AR LBD-derived, HLA-A2-binding peptides were identified and ranked with respect to HLA-A2 affinity and were used to culture peptide-specific T cells from HLA-A2+ prostate cancer patients. These T-cell cultures identified peptide-specific T cells specific for all ten peptides in at least one patient, and T cells specific for peptides AR805 and AR811 were detected in over half of patients. Peptide-specific CD8+ T-cell clones were then isolated and characterized for prostate cancer cytotoxicity and cytokine expression, identifying that AR805 and AR811 CD8+ T-cell clones could lyse prostate cancer cells in an HLA-A2-restricted fashion, but only AR811 CTL had polyfunctional cytokine expression. Epitopes were confirmed using immunization studies in HLA-A2 transgenic mice, in which the AR LBD is an autologous antigen with an identical protein sequence, which showed that mice immunized with AR811 developed peptide-specific CTL that lyse HLA-A2+ prostate cancer cells. These data show that AR805 and AR811 are HLA-A2-restricted epitopes for which CTL can be commonly detected in prostate cancer patients. Moreover, CTL responses specific for AR811 can be elicited by direct immunization of A2/DR1 mice. These findings suggest that it may be possible to elicit an anti-prostate tumor immune response by augmenting CTL populations using AR LBD-based vaccines.  相似文献   

15.
Specificity of peptide binding by the HLA-A2.1 molecule   总被引:6,自引:0,他引:6  
The HLA-A2 molecule contains a putative peptide binding site that is bounded by two alpha-helices and a beta-pleated sheet floor. Previous studies have demonstrated that the influenza virus matrix peptide M1 55-73 can sensitize target cells for lysis by HLA-A2.1-restricted virus-immune CTL and can induce CTL that can lyse virus-infected target cells. To assess the specificity of peptide binding by the HLA-A2.1 molecule, we examined the ability of seven variant M1 peptides to be recognized by a panel of M1 55-73 peptide-specific HLA-A2.1-restricted CTL lines. The results demonstrate that five out of the seven variant M1 55-73 peptides could be recognized by A2.1-restricted M1 55-73 peptide-specific CTL lines. The two variant peptides that were not recognized by any CTL could bind to HLA-A2.1 as indicated by their ability to compete for presentation of the M1 55-73 peptide. In addition, 5 of a panel of 24 unrelated peptides tested could also compete for M1 55-73 presentation by HLA-A2.1. One peptide derived from the sequence of a rotavirus protein could sensitize HLA-A2.1+ targets for lysis by M1 55-73 peptide-specific CTL. We conclude from these studies that: 1) the HLA-A2.1 molecule can bind a broad spectrum of peptides; 2) T cells selected for the ability to recognize one peptide plus a class I molecule can actually recognize an unrelated peptide presented by that same class I molecule; and 3) a stretch of three adjacent hydrophobic amino acids may be an important common feature of peptides that can bind to HLA-A2.1.  相似文献   

16.
To investigate the ability of human dendritic cells (DC) to process and present multiple epitopes from the gp100 melanoma tumor-associated Ags (TAA), DC from melanoma patients expressing HLA-A2 and HLA-A3 were pulsed with gp100-derived peptides G9154, G9209, or G9280 or were infected with a vaccinia vector (Vac-Pmel/gp100) containing the gene for gp100 and used to elicit CTL from autologous PBL. CTL were also generated after stimulation of PBL with autologous tumor. CTL induced with autologous tumor stimulation demonstrated HLA-A2-restricted, gp100-specific lysis of autologous and allogeneic tumors and no lysis of HLA-A3-expressing, gp100+ target cells. CTL generated by G9154, G9209, or G9280 peptide-pulsed, DC-lysed, HLA-A2-matched EBV transformed B cells pulsed with the corresponding peptide. CTL generated by Vac-Pmel/gp100-infected DC (DC/Pmel) lysed HLA-A2- or HLA-A3-matched B cell lines pulsed with the HLA-A2-restricted G9154, G9209, or G9280 or with the HLA-A3-restricted G917 peptide derived from gp100. Furthermore, these DC/Pmel-induced CTL demonstrated potent cytotoxicity against allogeneic HLA-A2- or HLA-A3-matched gp100+ melanoma cells and autologous tumor. We conclude that DC-expressing TAA present multiple gp100 epitopes in the context of multiple HLA class I-restricting alleles and elicit CTL that recognize multiple gp100-derived peptides in the context of multiple HLA class I alleles. The data suggest that for tumor immunotherapy, genetically modified DC that express an entire TAA may present the full array of possible CTL epitopes in the context of all possible HLA alleles and may be superior to DC pulsed with limited numbers of defined peptides.  相似文献   

17.
CTL directed at the highly conserved HIV-1 gag protein have been described in HIV-1 seropositive persons and may be an important host defense against this retrovirus. Presently only limited data are available regarding the specific epitopes recognized by these CTL. In this study, we have performed a detailed examination of the gag-specific CTL response in three HIV-1 seropositive subjects, using both unstimulated PBMC and cloned CTL. Lysis of gag-expressing targets was found to be mediated by CD3+CD8+ lymphocytes and restricted by class I Ag. Multiple class I Ag were found to restrict gag epitopes in each subject studied, with as many as three of these Ag involved in presenting gag CTL epitopes in a single subject. The majority of gag-specific CTL activity was found to be directed against epitopes in the p24 subunit of the gag protein, with at least seven different HLA class I-restricted CTL p24 epitopes identified in these three subjects. Less CTL activity was directed against p17 subunit of gag and two CTL epitopes were identified in this protein. Although as many as four different epitopes in gag were recognized using CTL from a single subject, none of the epitopes was recognized by CTL from more than one subject. Analysis of gag epitope recognition using cloned CTL demonstrated heterogeneity and specificity not appreciated using unstimulated PBMC. The identification of multiple relatively conserved epitopes in the HIV-1 gag protein and the heterogeneity of CTL responses to this protein may have important implications for vaccine development and our understanding of AIDS pathogenesis.  相似文献   

18.
Forty-two wild-type and analogue peptides derived from p53, carcinoembryonic Ag, Her2/neu, and MAGE2/3 were screened for their capacity to induce CTLs, in vitro, capable of recognizing tumor target lines. All the peptides bound HLA-A*0201 and two or more additional A2 supertype alleles with an IC(50) of 500 nM or less. A total of 20 of 22 wild-type and 9 of 12 single amino acid substitution analogues were found to be immunogenic in primary in vitro CTL induction assays, using normal PBMCs and GM-CSF/IL-4-induced dendritic cells. These results suggest that peripheral T cell tolerance does not prevent, in this system, induction of CTL responses against tumor-associated Ag peptides, and confirm that an HLA class I affinity of 500 nM or less is associated with CTL epitope immunogenicity. CTLs generated by 13 of 20 of the wild-type epitopes, 6 of 9 of the single, and 2 of 5 of the double substitution analogues tested recognized epitopes generated by endogenous processing of tumor-associated Ags and expressed by HLA-matched cancer cell lines. Further analysis revealed that recognition of naturally processed Ag was correlated with high HLA-A2.1-binding affinity (IC(50) = 200 nM or less; p = 0.008), suggesting that high binding affinity epitopes are frequently generated and can be recognized as a result of natural Ag processing. These results have implications for the development of cancer vaccines, in particular, and for the process of epitope selection in general.  相似文献   

19.
We have previously reported that 90K/Mac-2 binding protein (M2BP) was highly expressed in lung cancer and that M2BP-specific immunity was observed in many of cancer patients. In this study, we analyzed the ability of 11 M2BP-derived oligopeptides with an HLA-A*0201-binding motif to induce M2BP-specific cytotoxic T lymphocytes (CTL) from peripheral blood lymphocytes of normal donors by in vitro stimulation. One of the CTLs that were induced using M2BP216-224 (RIDITLSSV) produced interferon-gamma in response to HLA-A2-positive T2 cells pulsed with the same peptide and lysed MDA-MB-231 cells expressing both M2BP and HLA-A2. The cytolytic activities were blocked by antibodies against HLA class I or CD8. These findings suggest that M2BP216-224 is naturally processed from the native M2BP in cancer cells and recognized by M2BP-specific CTLs in an HLA-A2 restriction. We first identified M2BP-derived CTL epitopes that may be useful as a target antigenic epitope in clinical immunotherapy of cancer.  相似文献   

20.
We have studied Ags recognized by HLA class I-restricted CTLs established from tumor site to better understand the molecular basis of tumor immunology. HLA-A24-restricted and tumor-specific CTLs established from T cells infiltrating into lung adenocarcinoma recognized the two antigenic peptides encoded by a cyclophilin B gene, a family of genes for cyclophilins involved in T cell activation. These two cyclophilin B peptides at positions 84-92 and 91-99 induced HLA-A24-restricted CTL activity against tumor cells in PBMCs of leukemia patients, but not in epithelial cancer patients or in healthy donors. In contrast, the modified peptides at position 2 from phenylalanine to tyrosine, which had more than 10 times higher binding affinities to HLA-A24 molecules, could induce HLA-A24-restricted CTL activity against tumor cells in PBMCs from leukemia patients, epithelial cancer patients, or healthy donors. PHA-activated normal T cells were resistant to lysis by the CTL line or by these peptide-induced CTLs. These results indicate that a cyclophilin B gene encodes antigenic epitopes recognized by CTLs at the tumor site, although T cells in peripheral blood (except for those from leukemia patients) are immunologically tolerant to the cyclophilin B. These peptides might be applicable for use in specific immunotherapy of leukemia patients or that of epithelial cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号