首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recently developed PCR-fingerprinting method, the so-called DIR (diverged inverted repeats)-PCR, was used for quick search for molecular markers of Bacillus thuringiensis subspecies carrying the cry1 genes. The analysis of the fingerprints obtained with this method made it possible to reveal PCR fragments characteristic of the subspecies that produce proteins toxic for insects of the order Lepidoptera. Cloning and sequencing of these fragments allowed systems of SCAR (sequence characterized amplified region) primers to be designed, which are specific to the above group of B. thuringiensis strains. Comparison of the specific fragments with sequences available in the GenBank database revealed their homology with the rpoC gene family and the adjacent spacer region, suggesting chromosomal localization of these markers. This increases the reliability of the designed system of SCAR primers, because plasmids may be lost or transferred by transformation between closely related strains. It was demonstrated that the DIR-PCR method allows markers to be elaborated that are linked to diagnostic genotypic and phenotypic characteristics of bacteria.  相似文献   

2.
We developed a PCR detection method that selectively recognizes a single biological control agent and demonstrated that universally primed PCR (UP-PCR) can identify strain-specific markers. Antagonistic strains of Clonostachys rosea (syn. Gliocladium roseum) were screened by UP-PCR, and a strain-specific marker was identified for strain GR5. No significant sequence homology was found between this marker and any other sequences in the databases. Southern blot analysis of the PCR product revealed that the marker represented a single-copy sequence specific for strain GR5. The marker was converted into a sequence-characterized amplified region (SCAR), and a specific PCR primer pair was designed. Eighty-two strains, isolated primarily from Danish soils, and 31 soil samples, originating from different localities, were tested, and this specificity was confirmed. Two strains responded to the SCAR primers under suboptimal PCR conditions, and the amplified sequences from these strains were similar, but not identical, to the GR5 marker. Soil assays in which total DNA was extracted from GR5-infested and noninoculated field soils showed that the SCAR primers could detect GR5 in a pool of mixed DNA and that no other soil microorganisms present contained sequences amplified by the primers. The assay developed will be useful for monitoring biological control agents released into natural field soil.  相似文献   

3.
We developed a PCR detection method that selectively recognizes a single biological control agent and demonstrated that universally primed PCR (UP-PCR) can identify strain-specific markers. Antagonistic strains of Clonostachys rosea (syn. Gliocladium roseum) were screened by UP-PCR, and a strain-specific marker was identified for strain GR5. No significant sequence homology was found between this marker and any other sequences in the databases. Southern blot analysis of the PCR product revealed that the marker represented a single-copy sequence specific for strain GR5. The marker was converted into a sequence-characterized amplified region (SCAR), and a specific PCR primer pair was designed. Eighty-two strains, isolated primarily from Danish soils, and 31 soil samples, originating from different localities, were tested, and this specificity was confirmed. Two strains responded to the SCAR primers under suboptimal PCR conditions, and the amplified sequences from these strains were similar, but not identical, to the GR5 marker. Soil assays in which total DNA was extracted from GR5-infested and noninoculated field soils showed that the SCAR primers could detect GR5 in a pool of mixed DNA and that no other soil microorganisms present contained sequences amplified by the primers. The assay developed will be useful for monitoring biological control agents released into natural field soil.  相似文献   

4.
Koveza OV  Gostimskiĭ SA 《Genetika》2005,41(11):1522-1530
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism type.  相似文献   

5.
Aim:  The aim of this study was to develop a specific and sensitive identification method for two Aureobasidium pullulans biocontrol strains, CF10 and CF40, based on a sequence-characterized amplified region (SCAR) derived from RAPD – and multiplex-RAPD PCR analysis. Methods and Results:  The random amplified polymorphic DNA (RAPD) and multiplex RAPD-PCR techniques were used for a preliminary screening of A. pullulans genetic variability among 200 isolates. This approach allowed the selection of ten fragments present solely in strains CF10 and CF40. The RAPD fragments were cloned, sequenced and used to design two SCAR primers. Two primer pairs obtained from SCH3RAPD fragment of CF 40 and 6RAPD of CF10 were highly specific and sensitive. Conclusions:  In this study, we developed strain-specific multiplex-PCR based on sequence-characterized amplified region (SCAR) markers to simultaneously detect both strains in a single PCR. Significance and Impact of the Study:  This new multiplex-PCR provides a valuable tool for specific and sensitive identification of CF10 and CF40, and could be used in studies on the efficacy and persistence of introduced strains of A. pullulans for fire blight control.  相似文献   

6.
The development of DNA markers that can closely discriminate between Liriope and Ophiopogon species is vital for efficient and accurate identification of these species, and to ensure the quality, safety, and efficacy of medicines made from these plants. We developed species-specific molecular markers for these two genera. Forty RAPD primers were tested to detect polymorphism; species-specific RAPD bands were gel-purified, cloned, and sequenced. Primers for sequence-characterized amplified regions (SCARs) were then designed, based on nucleotide sequences of specific RAPD primers. SCAR markers SA06 and SB05, specific to Ophiopogon japonicus, amplified 460- and 553-bp DNA fragments, respectively. The marker SA12 amplified a 485-bp fragment specific to Liriope platyphylla. This is the first report of a species-specific SCAR marker for this group. These markers will be useful for rapid identification of closely related Liriope and Ophiopogon species.  相似文献   

7.
Lentinula edodes is the second most important cultivated mushroom worldwide, the most commercial strains have been identified only through traditional phenotypic analysis. In this study, a simple rapid PCR-based molecular method was developed for distinguishing commercial strains of L. edodes by developing specific sequence characterized amplified region (SCAR) markers and establishing multiplex PCR assays with the SCAR primers. Derived from the randomly amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) techniques, 10 informative SCAR markers were generated from 10 polymorphic RAPD and SRAP bands. The differences in SCAR phenotypes among different strains made these SCAR markers potentially useful to characterize 6 strains and identify them from other studied strains. Moreover, different SCAR phenotypes also made the other 17 studied strains to be divided into four distinguishable groups. The multiplex PCR assays were further established for the joint use of some SCAR markers efficiently. Compared with some identification methods reported previously, the special feature of this new molecular method is technically rapid and convenient in the practical use and suitable for analyzing large numbers of samples. Thus, the simple rapid PCR-based molecular method can be used as a helpful assistant tool for the lentinula industry. To our knowledge, this study is the first to describe a development of a new SCAR maker-based multiplex PCR assay for rapid molecular typing of edible mushroom.  相似文献   

8.
rpoB and gyr genes (and their fragments) of chromosomal DNA of bacteria from Bacillus cereus group - B. anthracis, B. cereus, and B. thuringiensis - which are the potential markers for their genotyping were sequenced and phylogenetic trees were constructed. Sets of primers for species-specific detection of B. anthracis, B. cereus, and B. thuringiensis by multiplex polymerase chain reaction were designed. Also primers sets, which allow to differentiate strains of B. anthracis with various plasmid profiles (containing both plasmids (pXO1+, pXO2+), and without one (pXO1+, pXO2- or pXO1-, pXO2+) or both plasmids (pXO1-, pXO2-), determining pathogenic characteristics of the strains, were developed. For multiplex PCR primer sets were optimized on the annealing temperature of primers and amplicon length. Itwas shown that phylogenetic tree can be applied as an indicator of reliability and accuracy of taxonomical classification of microorganisms' species and subspecies. Comparison of pXO1 and pXO2 plasmid sequences of B. anthracis showed that these plasmids contain 18 and 4 palindrome sequences respectively which can potentially form thermodynamically stable hairpin-loop structures.  相似文献   

9.
Although Lentinula edodes is the second most important cultivated mushroom worldwide, most industrially cultivated strains have been identified only through traditional phenotypic analysis. Here, we report for the first time the use of sequence characterized amplified region (SCAR) markers for strain differentiation. SCAR markers were created by first generating and sequencing single intersimple sequence repeats fragments, and then designing primers based on these sequences to amplify strain-specific fragments of a certain size. One SCAR primer pair, ISL450F/R7 (amplifying a band of c. 450 bp), was designed to identify one strain of L. edodes (strain No. 7). The SCAR primer pair was then used to correctly amplify the single unique fragment from DNA samples taken from a total of 85 strains representing three separate species. Our data provide the foundation for a precise and rapid PCR-based strain-diagnostic system for L. edodes.  相似文献   

10.
Species containing E genome of Thinopyrum offered potential to increase the genetic variability and desirable characters for wheat improvement. However, E genome specific marker was rare. The objective of the present report was to develop and identify sequenced characterized amplified region (SCAR) markers that can be used in detecting E chromosome in wheat background for breeding purpose. Total 280 random amplified polymorphic DNA (RAPD) primers were amplified for seeking of E genome specific fragments by using the genomic DNA of Thinopyrum elongatum and wheat controls as templates. As a result, six RAPD fragments specific for E genome were found and cloned, and then were converted to SCAR markers. The usability of these markers was validated using a number of Egenome-containing species and wheat as controls. These markers were subsequently located on E chromosomes using specific PCR and fluorescence in situ hybridization (FISH). SCAR markers developed in this research could be used in molecular marker assisted selection of wheat breeding with Thinopyrum chromatin introgressions.  相似文献   

11.
In order to develop more specific markers that characterize particular regions of the pea genome, the data on nucleotide sequences of RAPD fragments were used for choosing more extended primers, which may be helpful in amplifying a fragment corresponding to the particular DNA region. Of the 14 STS markers obtained from 14 polymorphic RAPD fragments, 12 were polymorphic, i.e., they are SCAR markers that can be used in genetic analysis. The transition from complex RAPD spectra to amplification of a particular SCAR marker substantially facilitates analysis of large samples for the presence or absence of the examined fragment. Inheritance of the developed SCAR markers was studied in F1 and F2. SCAR markers were used to identify various pea lines, cultivars, and mutants. It was established that the study of amplification of STS markers in various pea genotypes at varying temperatures of annealing and the comparison with amplification of the original RAPD fragments in the same genotypes provide an approach for analysis of RAPD polymorphism origin.  相似文献   

12.
Diploid Thinopyrum elongatum, a wild relative of wheat, contains many agronomically desirable traits and has potential for increasing genetic variability and introducing desirable characters in this crop. Few molecular markers are available for rapid screening of T. elongatum genome segments in the wheat genetic background. We used 36 RAPD primers and 33 ISSR primers to screen for polymorphisms in the common wheat variety Chinese Spring and in T. elongatum. Two RAPD markers and one ISSR marker, designated OPF03(1407), LW10(1487) and UBC841(701), were identified and were specific for the T. elongatum E genome. Three pairs of primers flanking these specific sequences were designed to produce SCAR markers. All three SCAR markers were T. elongatum E genome-specific. Two of these SCAR markers, SCAR(807) and SCAR(577), were present in all seven T. elongatum chromosomes, while SCAR(839) was specific for T. elongatum chromosomes 2E and 3E. These newly developed SCAR markers should be useful for detecting alien genome chromatin or chromosome segments in the genetic background of common wheat.  相似文献   

13.
The tropical tasar silkworm, Antheraea mylitta, has several ecoraces, 10 of which are commercially exploited for the production of tasar silk. These ecoraces are identified by morphological markers that are greatly influenced by photoperiod, humidity, altitude, and host plants. The DNA markers, random amplification of polymorphic DNA (RAPD), and sequence-characterized amplified region (SCAR) are identified to complement the existing morphological markers. Seven RAPD bands are selected that identify 8 of the 10 ecoraces. These identified RAPD fragments are sequenced and primers are designed for SCAR markers. Of the seven sets of primers, a single primer pair produced polymorphic SCAR bands that diagnose 5 of the 10 ecoraces. All 10 ecoraces are identified by the use of RAPD and SCAR markers together.  相似文献   

14.
The tropical tasar silkworm, Antheraea mylitta, has several ecoraces, 10 of which are commercially exploited for the production of tasar silk. These ecoraces are identified by morphological markers that are greatly influenced by photoperiod, humidity, altitude, and host plants. The DNA markers, random amplification of polymorphic DNA (RAPD), and sequence-characterized amplified region (SCAR) are identified to complement the existing morphological markers. Seven RAPD bands are selected that identify 8 of the 10 ecoraces. These identified RAPD fragments are sequenced and primers are designed for SCAR markers. Of the seven sets of primers, a single primer pair produced polymorphic SCAR bands that diagnose 5 of the 10 ecoraces. All 10 ecoraces are identified by the use of RAPD and SCAR markers together.  相似文献   

15.
In this paper, we report for the first time on authentication of Flammulina velutipes cultivars by using strain-specific sequence-characterized amplified region (SCAR) markers developed from inter-simple sequence repeat (ISSR) markers. The genomic DNA polymorphism was analyzed by the ISSR technique in 7 strains of F. velutipes presently cultivated in China on a commercial scale. Eight primers selected from 20 ISSR primers amplified 104 clear and stable bands, of which 81 bands were polymorphic. Among the selected primers, primer ISSR9 can distinguish strain No. 12 from the other 6 strains by amplifying a unique and reproducible band of approximately 750 bp. According to the sequence of the strain-specific fragment, a pair of SCAR primers was designed to diagnose strain No. 12 on the molecular level. The validity of the SCAR marker was confirmed by using DNA samples from another 12 strains of F. velutipes obtained from different parts of China. Our data provided the foundation for a precise and rapid PCR-based strain-diagnostic system for F. Velutipes.  相似文献   

16.
RAPD (Random Amplified Polymorphic DNA) and ISSR (Inter Simple Sequence Repeats) markers were used to analyse the genetic divergence between the regenerated plants derived from callus cultures and the original maize line A188. Analysis of polymorphism by using 38 RAPD- and 10 ISSR-oligonucleotide primers showed that the differences between eight examined somaclones and the original line ranged from 6.5 to 23%. As confirmed using new primers, the regenerants derived from callus cultures grouped into two clusters according to their origin. The regenerants isolated from calluses grown for eight months differed from one another and the original line to a larger extent than the regenerants obtained from two-month callus cultures. In some somaclones, molecular marking of the regenerants revealed specific RAPD and ISSR fragments that were absent in other somaclones or the original maize line. On the basis of six specific fragments (five RAPD and one ISSR), SCAR (Sequence Characterized Amplified Region) markers were developed. Specific polymorphism revealed with random primers was completely confirmed using five SCAR markers. Polymorphism of one SCAR marker differed from that revealed with random primers. Five SCAR fragments were inherited as simple dominant traits. One SCAR fragment displayed codominant inheritance.  相似文献   

17.
RAPD (Random Amplified Polymorphic DNA) and ISSR (Inter Simple Sequence Repeats) markers were used to analyse the genetic divergence between the regenerated plants derived from callus cultures and the original maize line A188. Analysis of polymorphism by using 38 RAPD- and 10 ISSR-oligonucleotide primers showed that the differences between eight examined somaclones and the original line ranged from 6.5 to 23%. As confirmed using new primers, the regenerants derived from callus cultures grouped into two clusters according to their origin. The regenerants isolated from calluses grown for eight months differed from one another and the original line to a larger extent than the regenerants obtained from two-month callus cultures. In some somaclones, molecular marking of the regenerants revealed specific RAPD and ISSR fragments that were absent in other somaclones or the original maize line. On the basis of six specific fragments (five RAPD and one ISSR), SCAR (Sequence Characterized Amplified Region) markers were developed. Specific polymorphism revealed with random primers was completely confirmed using five SCAR markers. Polymorphism of one SCAR marker differed from that revealed with random primers. Five SCAR fragments were inherited as simple dominant traits. One SCAR fragment displayed codominant inheritance.  相似文献   

18.
The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), is a major pest of stored grain and cereal crops. It is also an important model species in genetic, ecological, and evolutionary research. The majority of its genome was recently sequenced and published. However, the genomic sequence of the small Y-chromosome is still undetermined, which hinders the development of molecular sex identification methods. Traditional methods for sexing adult forms of Tribolium beetles are troublesome. Therefore, a method for molecular sex identification in the red flour beetle was developed. One sex-linked randomly amplified polymorphic DNA marker was converted into a sequence-characterized amplified region (SCAR). The SCAR was aligned with the T. castaneum reference whole-genome sequence and fully matched a fragment of a single contig of unknown genomic location. The novelty of the method is that the fragment consists of shorter DNA fragments that are also present at other locations around the genome, but the particular order of these fragments within the sequenced region appeared to be Y-specific and this property was utilized for marker development. A set of three primers for multiplex PCR reaction was designed resulting in amplification of different length Y-specific and not-Y-specific (control) DNA fragments in a single PCR, which allows to distinguish males from females. The primers successfully sexed pre-sexed pupae and adult beetles from six laboratory strains, showing that the order of the repeated fragments is conserved in the species and is not strain-specific.  相似文献   

19.
At present, more than 100 strains of Lentinula edodes are cultivated on a commercial scale in China. A simple, reliable, and effective method to distinguish some commercial strains of the superior type from other commercial strains is very important for the Lentinula industry. In this study, 23 commercial strains of L. edodes cultivated widely in China at present were collected and analyzed with randomly amplified polymorphic DNA (RAPD) technique. Three informative dominant sequence characterized amplified region (SCAR) markers were developed by designing three pairs of specific SCAR primers from three sequenced differential RAPD bands, respectively. Based on the three SCAR markers, three different multiplex polymerase chain reaction (PCR) phenotypes were detected among the 23 studied commercial strains and in which a multilocus phenotype characterizing a commercial strain Cr02 of the superior type could potentially be used to distinguish this strain from the other 22 studied commercial strains. To our knowledge, this study is the first to describe the development of a multiplex PCR technique based on SCAR markers for detecting the molecular phenotypes among commercial strains of L. edodes in China.  相似文献   

20.
BACKGROUND AND AIMS: The aim of this study was to develop species-specific molecular markers for Bambusa balcooa and B. tulda to allow for their proper identification, in order to avoid unintentional adulteration that affects the quality and quantity of paper pulp production. METHODS: Two putative, species-specific RAPD markers, Bb836 for B. balcooa and Bt609 for B. tulda were generated using a PCR-based RAPD technique. Species-specificity of these two markers was confirmed through Southern hybridization in which RAPD gels were blotted and hybridized with radiolabelled cloned RAPD markers. Southern hybridization analyses were also performed to validate homology of the co-migrating Bb836 and Bt609 marker bands amplified from 16 different populations of B. balcooa and B. tulda, respectively. Sequence-characterized amplified region (SCAR) markers were developed from Bb836 and Bt609 sequences, using 20-mer oligonucleotide primers designed from both the flanking ends of the respective RAPD primers. KEY RESULTS: As anticipated, Bb836 hybridized with an amplified band from B. balcooa and Bt609 hybridized only with an amplified product from B. tulda; the two markers did not hybridize with the amplified products of any of the other 14 bamboo species studied. The two pairs of SCAR primers amplified the target sequences only in the respective species. The species-specific SCAR fragments were named as 'Balco836' for B. balcooa and 'Tuldo609' for B. tulda. The species-specific 'Balco836' was amplified from the genomic DNA of 80 individuals of 16 populations of B. balcooa studied. Similarly, the presence of 'Tuldo609' was noted in all the 80 individuals representing 16 populations of B. tulda assessed. These SCAR fragments contained no obvious repetitive sequence beyond the primers. CONCLUSION: These two molecular markers are potentially useful for regulatory agencies to establish sovereign rights of the germplasms of B. balcooa and B. tulda. In addition, this is the first report of species-specific SCAR marker development in bamboo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号