首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M R Dzoljic 《Prostaglandins》1978,15(2):317-324
The experiments were carried out to investigate the effects of prostaglandins (PGs) on the sleep pattern in the cat, and in normal and EFAD rats. The data indicate that the duration of slow wave sleep (SWS) was significantly longer in EFAD rats compared with the normal rats. However, no difference in the REM sleep was observed between the two groups. Intraventricular (i.vc. )administration of PGE1, PGE2 and PGF2alpha increased wakefulness without a significant alteration of REM sleep. PGE1 administered i.vc. did not alter the duration of SWS or REM sleep in the chronic cat, but induced ponto-geniculo-occipital (PGO) waves (spikes) which are the phasic phenomenon of REM sleep. The fact that previous administration of 5-hydroxytryptophane abolished the PGE1-induced PGO spiking, might indicate that this drug triggered the spikes mainly via the functional inhibition of the serotonergic system.  相似文献   

2.
Fractionations are 20- to 100-ms pauses indiaphragm activity that occur spontaneously during rapid-eye-movement(REM) sleep, sometimes in association with pontogeniculooccipital (PGO)waves. Auditory stimuli can elicit fractionations or PGOwaves during REM sleep, non-REM (NREM) sleep, and waking; however,their interrelationship has not been investigated. To determine whetherthe two phenomena are produced by a common phasic-event generator inREM sleep, we examined PGO waves and fractionations that were elicitedby auditory stimuli (tones) presented to freely behaving cats across states. Tones elicited PGO waves and two types of fractionations: short-latency fractionation responses (SFRs; 10- to 60-ms latencies) and long-latency fractionation responses (LFRs; 60- to 120-ms latencies). Both a PGO wave and a SFR were elicited in60-70% of trials across states, but each could be elicited alone.The latencies and durations of elicited SFRs were similar acrossstates, but the latencies of elicited PGO waves in REM sleep (mean 62.5 ms) were significantly longer than in waking or NREM sleep. Elicited SFRs consistently occur with shorter latencies than do PGO waves, incontrast to spontaneous fractionations, which have a variable relationship to PGO waves and usually occur 10-40 ms after the onset of the PGO wave. The LFR then, elicited mostfrequently during REM sleep, resembles a spontaneous fractionation inits temporal relationship to the PGO wave and may reflect the bias toward motoneuronal inhibition characterizing REM sleep but not NREMsleep or waking. We conclude that, although PGO waves and SFRs sharesome features, like LFRs they probably are generated by differentneuronal populations. In three cats there was no correlation betweenPGO waves and fractionations, whereas in one cat they were associatedin REM sleep (LFRs and SFRs) and waking (SFRs only). Thus the majorityof evidence argues against the existence of a common phasic-eventgenerator in REM sleep.

  相似文献   

3.
The sleep electroencephalogram (EEG) is highly heritable in humans and yet little is known about the genetic basis of inter-individual differences in sleep architecture. The aim of this study was to identify associations between candidate circadian gene variants and the polysomnogram, recorded under highly controlled laboratory conditions during a baseline, overnight, 8 h sleep opportunity. A candidate gene approach was employed to analyze single-nucleotide polymorphisms from five circadian-related genes in a two-phase analysis of 84 healthy young adults (28 F; 23.21 ± 2.97 years) of European ancestry. A common variant in Period2 (PER2) was associated with 20 min less slow-wave sleep (SWS) in carriers of the minor allele than in noncarriers, representing a 22% reduction in SWS duration. Moreover, spectral analysis in a subset of participants (n = 37) showed the same PER2 polymorphism was associated with reduced EEG power density in the low delta range (0.25–1.0 Hz) during non-REM sleep and lower slow-wave activity (0.75–4.5 Hz) in the early part of the sleep episode. These results indicate the involvement of PER2 in the homeostatic process of sleep. Additionally, a rare variant in Melatonin Receptor 1B was associated with longer REM sleep latency, with minor allele carriers exhibiting an average of 65 min (87%) longer latency from sleep onset to REM sleep, compared to noncarriers. These findings suggest that circadian-related genes can modulate sleep architecture and the sleep EEG, including specific parameters previously implicated in the homeostatic regulation of sleep.  相似文献   

4.
5.
1. Pontogeniculooccipital (PGO) waves are recorded during rapid eye movement (REM) sleep from the pontine reticular formation, lateral geniculate bodies, and occipital cortex of many species. 2. PGO waves are associated with increased visual system excitability but arise spontaneously and not via stimulation of the primary visual afferents. Both auditory and somatosensory stimuli influence PGO wave activity. 3. Studies using a variety of techniques suggest that the pontine brain stem is the site of PGO wave generation. Immediately prior to the appearance of PGO waves, neurons located in the region of the brachium conjunctivum exhibit bursts of increased firing, while neurons in the dorsal raphe nuclei show a cessation of firing. 4. The administration of pharmacological agents antagonizing noradrenergic or serotonergic neurotransmission increases the occurrence of PGO waves independent of REM sleep. Cholinomimetic administration increases the occurrence of both PGO waves and other components of REM sleep. 5. Regarding function, the PGO wave-generating network has been postulated to inform the visual system about eye movements, to promote brain development, and to facilitate the response to novel environmental stimuli.  相似文献   

6.

Background

Sleep plays an active role in memory consolidation. Sleep structure (REM/Slow wave activity [SWS]) can be modified after learning, and in some cortical circuits, sleep is associated with replay of the learned experience. While the majority of this work has focused on neocortical and hippocampal circuits, the olfactory system may offer unique advantages as a model system for exploring sleep and memory, given the short, non-thalamic pathway from nose to primary olfactory (piriform cortex), and rapid cortex-dependent odor learning.

Methodology/Principal Findings

We examined piriform cortical odor responses using local field potentials (LFPs) from freely behaving Long-Evans hooded rats over the sleep-wake cycle, and the neuronal modifications that occurred within the piriform cortex both during and after odor-fear conditioning. We also recorded LFPs from naïve animals to characterize sleep activity in the piriform cortex and to analyze transient odor-evoked cortical responses during different sleep stages. Naïve rats in their home cages spent 40% of their time in SWS, during which the piriform cortex was significantly hypo-responsive to odor stimulation compared to awake and REM sleep states. Rats trained in the paired odor-shock conditioning paradigm developed enhanced conditioned odor evoked gamma frequency activity in the piriform cortex over the course of training compared to pseudo-conditioned rats. Furthermore, conditioned rats spent significantly more time in SWS immediately post-training both compared to pre-training days and compared to pseudo-conditioned rats. The increase in SWS immediately after training significantly correlated with the duration of odor-evoked freezing the following day.

Conclusions/Significance

The rat piriform cortex is hypo-responsive to odors during SWS which accounts for nearly 40% of each 24 hour period. The duration of slow-wave activity in the piriform cortex is enhanced immediately post-conditioning, and this increase is significantly correlated with subsequent memory performance. Together, these results suggest the piriform cortex may go offline during SWS to facilitate consolidation of learned odors with reduced external interference.  相似文献   

7.
Vigilance and parallel occurrence of epileptic activity after administration of the 5-HT1A agonist 8-OH-DPAT and the NMDA receptor antagonist MK-801 were studied in the genetic absence epilepsy model WAG/Rij rats. Spike-wave discharges (SWD) were present predominantly in passive awake and light slow wave sleep (SWS1) either in control animals or after treatments. Injection of 8-OH-DPAT (20.0 μg/rat i.c.v.) caused marked increase and MK-801 (10.0 μg/rat i.c.v.) decrease in SWD densities, thus the ratios of SWD in passive awake and in SWS1. SWD densities of MK-801 plus 8-OH-DPAT in combination were similar to those of CSF+CSF treated control rats. Both 8-OH-DPAT and MK-801 transiently increased the duration of active awake, increased latency and decreased duration of rapid eye movement (REM) sleep. 8-OH-DPAT increased the amount of SWD despite the decrease in the duration of SWS1. MK-801 decreased the amount of SWD despite the lack of significant change in duration of passive awake or SWS1. Pre-treatment with MK-801 reversed 8-OH-DPAT- induced increase in duration of SWD without any effect on 8-OH-DPAT-induced changes in sleep parameters. Our studies provide evidence that 8-OH-DPAT-induced epileptic activity is independent of its effect on sleep, and that interaction of serotonergic and glutamatergic systems plays a role in the generation of SWD, but not in the regulation of vigilance and sleep.  相似文献   

8.
Lagos P  Monti JM  Jantos H  Torterolo P 《Life sciences》2012,90(23-24):895-899
AimsTo examine the effects of bilateral microinjection of melanin-concentrating hormone (MCH) 50 and 100 ng into the horizontal limb of the diagonal band of Broca (HDB) on sleep variables during the light phase of the light–dark cycle of the rat.Main methodsMale Wistar rats were implanted for chronic sleep recordings. In addition, a guide cannula was implanted above the right and left HDB. Following the microinjection of MCH or control solution the electroencephalogram and the electromyogram were recorded for 6 h. Data was collected and classified as either wakefulness (W), light sleep, slow wave sleep (SWS) or REM sleep (REMS). Latencies for SWS and REMS, as well as the number of REM periods and the mean duration of REM episodes were also determined.Key findingsMCH 50 and 100 ng significantly decreased W during the first 2-h of recording. Moreover, MCH 100 ng significantly reduced REMS latency and increased REMS time during the first 2-h block of the recording, due to an increase in the number of REM periods.SignificanceOur findings tend to suggest that the basal forebrain participates in the effects of MCH on W and REMS through the deactivation of cholinergic, glutamatergic and γ-aminobutyric acid (GABA)-ergic cells.  相似文献   

9.
The amygdala plays a central role in fear conditioning, a model of anticipatory anxiety. It has massive projections to brainstem regions involved in rapid eye movement sleep (REM) and ponto-geniculo-occipital (PGO) wave generation. PGO waves occur spontaneously in REM or in response to stimuli. Electrical stimulation of the central nucleus of the amygdala enhances spontaneous PGO wave activity during REM and the amplitude of both the acoustic startle response and the elicited PGO wave (PGOE), a neural marker of alerting. This study examined the effects of fear conditioning on REM and on PGOE. On conditioning days, the number of REM episodes, the average REM duration and the REM percentage were decreased while REM latency was increased. The presentation of auditory stimuli in the presence of a light conditioned stimulus produced PGOE of greater amplitudes. The results suggest that fear, most likely involving the amygdala, can influence REM and brainstem alerting mechanisms.  相似文献   

10.
Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP) takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα) in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK) showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS) followed by a rebound during rapid-eye-movement sleep (REM). The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes synaptic restructuring.  相似文献   

11.
The hypothesis that REM sleep is cholinergically mediated is supported by the identification of a cholinoceptive trigger zone in the FTG. Since this trigger zone is devoid of cholinergic neurons, the aim of the present study was to test the hypothesis that a cholinergic drive for REM sleep may come from the cholinergic cells of the PBL region. Chronically implanted freely moving cats with electrodes for sleep and PGO wave recordings were used. Guide tubes were implanted for carbachol microinjections (4 micrograms/250 nl) in the PBL and FTG. All microinjections were delivered in close vicinity of ChAT+ cholinergic cells in the PBL region. Results showed that a single unilateral carbachol microinjection into the PBL induced sustained (24 hr) state-independent ipsilateral PGO wave activity. This PGO wave activity was followed by a prolonged enhancement of REM sleep lasting for more than six days. We also observed that REM enhancement was followed by a delayed but marked enhancement of S sleep episodes with PGO waves (SP), which are normally brief transitions from S to REM sleep. Our findings strongly support the hypothesis that cholinergic drive for REM sleep comes from the lateral pontine tegmentum and we suggest that the PBL region plays a major role in both PGO wave generation and long-term regulation of REM sleep induction.  相似文献   

12.
Brain stem transection studies suggest that pontine neurons play a key role in regulating the mammalian sleep cycle. The serotonin (5-HT) hypothesis originally postulated that pontine 5-HT containing neurons directly initiated and maintained synchronized or NREM sleep and "primed" rapid eye movement (REM) sleep. Contrary to the predictions of this hypothesis, single unit recordings from the serotonergic dorsal raphe nucleus (DRN) have uniformly shown that DRN discharge rate is positively correlated with behavioral arousal but negatively correlated with both the NREM and REM phases of sleep. These findings required revision of the original 5-HT hypothesis and suggested instead that DRN discharge may influence the maintenance of behavioral arousal and, by ceasing to discharge, may contribute to the generation of NREM and REM sleep. The purpose of this paper was to quantitatively assess the strength of the correlation between DRN discharge, REM sleep, and PGO waves following the experimental perturbations of the sleep cycle. Since forced locomotor activity is known to powerfully alter the timing of sleep and wakefulness, the present experiments used forced activity in an attempt to dissociate DRN discharge from the sleep cycle. It was hypothesized that such dissociations would suggest DRN discharge is not involved in sleep cycle regulation. Contrastingly, preserved correlations would support the hypothesis of a possible causal relationship between DRN discharge, PGO waves activity, and the timing of sleep and wakefulness. Extracellular recordings were obtained from single cells in the DRN of intact, undrugged cats across greater than 300 sleep cycles with durations ranging from about 8 to 80 mins. Forced activity significantly reduced the amount of time spent in wakefulness and increased the number but not the duration of REM sleep epochs. The results revealed that DRN discharge rate was altered as a function of sleep cycle duration. In no case, however, was forced activity able to completely dissociate the characteristic DRN discharge rates from PGO waves or the ultradian sleep cycle. The inability of forced activity to disrupt the faithful relationships between DRN discharge, PGO waves, and sleep cycle phase thus provides a new form of correlative evidence consistent with the hypothesis that the DRN is involved in sleep cycle regulation.  相似文献   

13.
In cats prepared for chronic recording of sleep, an investigation was made on the effects of an anaesthetic agent, ketamine [cl-581, 2-(O-chlorophenyl)-2-methylaminocyclohexamine HCl] and rapid eye movement (REM) sleep deprivation on spiking activity recorded from lateral geniculate (LGN) nucleus. In normal cats most of the LGN spikes occurring during sleep are found in REM sleep. Follwoing injection of 10 mg/kg of ketamine a substantial increase of slow wave sleep (SWS) spikes occurred. While selective REM sleep deprivation had the same effects, combined influences of ketamine and REM-sleep deprivation led to a marked potentiation of their individual effects probably by simultaneous stimulation of the neurone system which determines the endogenous electrical activity of LGN cells.  相似文献   

14.
Seven male cats were adapted to different schedules of restricted sleep. The cat was permitted to go to sleep either 2, 4 or 8 hours per day with the balance to 24-h periode spent in wakefulness enforced by means of a treadmill. Two experiments were run and the same cats served in both runs. The experiments and schedules were separated by at least two weeks during which time cats were maintained under ordinary laboratory conditions. Our experiment used treadmill speed of 2.6 m/min which was easily tolerated and effective in eliminating sleep. Another experiment used treadmill speed of 4.6 m/min which produced more physical exercise. As available sleep time become progressively shorter, REM sleep increased while SWS decreased. If restriction in sleep time was associated with more physical exercise then the composition of the subsequent sleep was different : SWS increased while REM sleep decreased. The functional significance of these opposite effects are presumably different. The immediate SWS response to the prior muscular exercise is suggestive of its recovery function.  相似文献   

15.
We measured the pressure within an isolated segment of the upper airway in three dogs during wakefulness (W), slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Measurements were taken from a segment of the upper airway between the nares and midtrachea while the dog breathed through a tracheostoma. These pressure changes represented the sum of respiratory-related forces generated by all muscles of the upper airway. The mean base-line level of upper airway pressure (Pua) was -0.5 +/- 0.03 cmH2O during W, increased by a mean of 2.1 +/- 0.2 cmH2O during SWS, and was variable during REM sleep. The mean inspiratory-related phasic change in Pua was -1.2 +/- 0.1 cmH2O during wakefulness. During SWS, this phasic change in Pua decreased significantly to a mean of -0.9 +/- 0.1 cmH2O (P less than 0.05). During REM sleep, the phasic activity was extremely variable with periods in which there were no fluctuations in Pua and others with high swings in Pua. These data indicate that in dogs the sum of forces which dilate the upper airway during W decreases during SWS and REM sleep. The consistent coupling between inspiratory drive and upper airway dilatation during wakefulness persists in SWS, but is frequently uncoupled during REM sleep.  相似文献   

16.
Understanding the interaction between the nervous system and cerebral vasculature is fundamental to forming a complete picture of the neurophysiology of sleep and its role in maintaining physiological homeostasis. However, the intrinsic hemodynamics of slow-wave sleep (SWS) are still poorly known. We carried out 30 all-night sleep measurements with combined near-infrared spectroscopy (NIRS) and polysomnography to investigate spontaneous hemodynamic behavior in SWS compared to light (LS) and rapid-eye-movement sleep (REM). In particular, we concentrated on slow oscillations (3-150 mHz) in oxy- and deoxyhemoglobin concentrations, heart rate, arterial oxygen saturation, and the pulsation amplitude of the photoplethysmographic signal. We also analyzed the behavior of these variables during sleep stage transitions. The results indicate that slow spontaneous cortical and systemic hemodynamic activity is reduced in SWS compared to LS, REM, and wakefulness. This behavior may be explained by neuronal synchronization observed in electrophysiological studies of SWS and a reduction in autonomic nervous system activity. Also, sleep stage transitions are asymmetric, so that the SWS-to-LS and LS-to-REM transitions, which are associated with an increase in the complexity of cortical electrophysiological activity, are characterized by more dramatic hemodynamic changes than the opposite transitions. Thus, it appears that while the onset of SWS and termination of REM occur only as gradual processes over time, the termination of SWS and onset of REM may be triggered more abruptly by a particular physiological event or condition. The results suggest that scalp hemodynamic changes should be considered alongside cortical hemodynamic changes in NIRS sleep studies to assess the interaction between the autonomic and central nervous systems.  相似文献   

17.
18.
In rats with the persistent alcohol motivation the electrophysiological sleep pattern was studied during ethanol intake, after 24 and 48 hours of alcohol withdrawal. It was established that during the voluntary ethanol intake rats may be divided into two groups: with comparative deficit (1st group) and comparative abundance (2nd group) of REM sleep. Alcohol withdrawal caused differential alterations of sleep-wakefulness cycle: in the 1st group of rats REM sleep was more suppressed while in the 2nd group--more increased in comparison to those during ethanol intake. In all animals the SWS depression, increase of awakenings, the aggravation of falling asleep and decrease of sleep depth were observed. DSIP (0.1 mg/kg, i.p. 1 hour before sleep recording) was found to regulate sleep disorders caused by ethanol withdrawal. It makes the neuropeptide possible to be recommended for ethanol withdrawal syndrome treatment in clinical practice.  相似文献   

19.
Exogenous administration of orexin can promote wakefulness and respiration. Here we examined whether intrinsic orexin participates in the control of breathing in a vigilance state-dependent manner. Ventilation was recorded together with electroencephalography and electromyography for 6 h during the daytime in prepro-orexin knockout mice (ORX-KO) and wild-type (WT) littermates. Respiratory parameters were separately determined during quiet wakefulness (QW), slow-wave sleep (SWS), or rapid eye movement (REM) sleep. Basal ventilation was normal in ORX-KO, irrespective of vigilance states. The hypercapnic ventilatory response during QW in ORX-KO (0.19 +/- 0.01 ml.min(-1).g(-1).%CO(2)(-1)) was significantly smaller than that in WT mice (0.38 +/- 0.04 ml.min(-1).g(-1).%CO(2)(-1)), whereas the responses during SWS and REM in ORX-KO were comparable to those in WT mice. Hypoxic responses during wake and sleep periods were not different between the genotypes. Spontaneous but not postsigh sleep apneas were more frequent in ORX-KO than in WT littermates during both SWS and REM sleep. Our findings suggest that orexin plays a crucial role both in CO(2) sensitivity during wakefulness and in preserving ventilation stability during sleep.  相似文献   

20.

Heart rate variability (HRV) and body temperature during the sleep onset period was examined. The core body temperature and electrocardiogram were recorded continuously beginning 1 h before lights out (LO) until the end of the first rapid eye movement sleep (REM) in 14 young healthy subjects. HRV was calculated by the MemCalc method. The time course changes in body temperature and HRV was analyzed before and after sleep onset, and during the following eight consecutive phases: the 60 min before LO, the 30 min before LO, LO, first stage 2 (sleep onset), first slow wave sleep (SWS), stage 2 just before REM, start of REM, and end of REM. A clear decline was observed in the ratio of the low frequency (LF) to high frequency (HF) component of HRV (LF/HF), normalized LF (LF/(LF + HF)), and body temperature prior to sleep onset both in the time course of the sleep onset period and in the consecutive phases. The HF increased prior to sleep onset in the consecutive phases, while no clear increase was observed in the time course of sleep onset period. Changes in LF/(LF + HF) and LF/HF preceded SWS and REM. These results suggest the existence of a strong coupling between the cardiac autonomic nervous system and body temperature at the sleep onset period that may not be circadian effects. Furthermore, LF/(LF + HF) and LF/HF may possibly anticipate sleep and the onset of each sleep stage.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号