首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benedetti C  Haynes CM  Yang Y  Harding HP  Ron D 《Genetics》2006,174(1):229-239
Perturbation of the protein-folding environment in the mitochondrial matrix selectively upregulates the expression of nuclear genes encoding mitochondrial chaperones. To identify components of the signal transduction pathway(s) mediating this mitochondrial unfolded protein response (UPR(mt)), we first isolated a temperature-sensitive mutation (zc32) that conditionally activates the UPR(mt) in C. elegans and subsequently searched for suppressors by systematic inactivation of genes. RNAi of ubl-5, a gene encoding a ubiquitin-like protein, suppresses activation of the UPR(mt) markers hsp-60::gfp and hsp-6::gfp by the zc32 mutation and by other manipulations that promote mitochondrial protein misfolding. ubl-5 (RNAi) inhibits the induction of endogenous mitochondrial chaperone encoding genes hsp-60 and hsp-6 and compromises the ability of animals to cope with mitochondrial stress. Mitochondrial morphology and assembly of multi-subunit mitochondrial complexes of biotinylated proteins are also perturbed in ubl-5(RNAi) worms, indicating that UBL-5 also counteracts physiological levels of mitochondrial stress. Induction of mitochondrial stress promotes accumulation of GFP-tagged UBL-5 in nuclei of transgenic worms, suggesting that UBL-5 effects a nuclear step required for mounting a response to the threat of mitochondrial protein misfolding.  相似文献   

2.
3.
A mitochondrial specific stress response in mammalian cells   总被引:18,自引:0,他引:18  
  相似文献   

4.
The mitochondrial chaperone mortalin was implicated in Parkinson''s disease (PD) because of its reduced levels in the brains of PD patients and disease-associated rare genetic variants that failed to rescue impaired mitochondrial integrity in cellular knockdown models. To uncover the molecular mechanisms underlying mortalin-related neurodegeneration, we dissected the cellular surveillance mechanisms related to mitochondrial quality control, defined the effects of reduced mortalin function at the molecular and cellular levels and investigated the functional interaction of mortalin with Parkin and PINK1, two PD-related proteins involved in mitochondrial homeostasis. We found that reduced mortalin function leads to: (1) activation of the mitochondrial unfolded protein response (UPR(mt)), (2) increased susceptibility towards intramitochondrial proteolytic stress, (3) increased autophagic degradation of fragmented mitochondria and (4) reduced mitochondrial mass in human cells in vitro and ex vivo. These alterations caused increased vulnerability toward apoptotic cell death. Proteotoxic perturbations induced by either partial loss of mortalin or chemical induction were rescued by complementation with native mortalin, but not disease-associated mortalin variants, and were independent of the integrity of autophagic pathways. However, Parkin and PINK1 rescued loss of mortalin phenotypes via increased lysosomal-mediated mitochondrial clearance and required intact autophagic machinery. Our results on loss of mortalin function reveal a direct link between impaired mitochondrial proteostasis, UPR(mt) and PD and show that effective removal of dysfunctional mitochondria via either genetic (PINK1 and Parkin overexpression) or pharmacological intervention (rapamycin) may compensate mitochondrial phenotypes.  相似文献   

5.
6.
7.
Pore-forming toxins (PFTs) constitute the single largest class of proteinaceous bacterial virulence factors and are made by many of the most important bacterial pathogens. Host responses to these toxins are complex and poorly understood. We find that the endoplasmic reticulum unfolded protein response (UPR) is activated upon exposure to PFTs both in Caenorhabditis elegans and in mammalian cells. Activation of the UPR is protective in vivo against PFTs since animals that lack either the ire-1-xbp-1 or the atf-6 arms of the UPR are more sensitive to PFT than wild-type animals. The UPR acts directly in the cells targeted by the PFT. Loss of the UPR leads to a normal response against unrelated toxins or a pathogenic bacterium, indicating its PFT-protective role is specific. The p38 mitogen-activated protein (MAPK) kinase pathway has been previously shown to be important for cellular defenses against PFTs. We find here that the UPR is one of the key downstream targets of the p38 MAPK pathway in response to PFT since loss of a functional p38 MAPK pathway leads to a failure of PFT to properly activate the ire-1-xbp-1 arm of the UPR. The UPR-mediated activation and response to PFTs is distinct from the canonical UPR-mediated response to unfolded proteins both in terms of its activation and functional sensitivities. These data demonstrate that the UPR, a fundamental intracellular pathway, can operate in intrinsic cellular defenses against bacterial attack.  相似文献   

8.
Shwachman-Diamond syndrome(SDS) is a multi-system disorder characterized by bone marrow failure, pancreatic insufficiency,skeletal abnormalities, and increased risk of leukemic transformation. Most patients with SDS contain mutations in the ShwachmanBodian-Diamond syndrome gene(SBDS), encoding a highly conserved protein that has been implicated in ribosome biogenesis.Emerging evidence also suggests a distinct role of SBDS beyond protein translation. Using the yeast model of SDS, we examined the underlying mechanisms that cause cells lacking Sdo1 p, the yeast SBDS ortholog, to exhibit reduced tolerance to various stress conditions.Our analysis indicates that the environmental stress response(ESR), heat shock response(HSR), and endoplasmic reticulum unfolded protein response(UPR) of sdo1 D cells are functional and that defects in these pathways do not produce the phenotypes observed in sdo1 D yeast. Depletion of mitochondrial DNA(mt DNA) was observed in sdo1 D cells, and this is a probable cause of the mitochondrial insufficiency in SDS. Prior disruption of POR1, encoding the mitochondrial voltage dependent anion channel(VDAC), abrogated the effects of SDO1 deletion and substantially restored resistance to environmental stressors and protected against damage to mt DNA.Conversely, wild-type cells over-expressing POR1 exhibited growth impairment and increased stress sensitivity similar to that seen in sdo1 D cells. Overall, our results suggest that specific VDAC inhibitors may have therapeutic benefits for SDS patients.  相似文献   

9.
10.
11.
12.
J Sun  Y Liu  A Aballay 《EMBO reports》2012,13(9):855-860
The increased demand on protein folding in the endoplasmic reticulum (ER) during bacterial infection activates the unfolded protein response (UPR). OCTR-1-a G protein-coupled catecholamine receptor expressed in neurons-suppresses innate immunity by downregulating a non-canonical UPR pathway and the p38 MAPK pathway. Here, we show that OCTR-1 also regulates the canonical UPR pathway, which is controlled by XBP-1, at the organismal level. Importantly, XBP-1 is not under OCTR-1 control during development, only at the adult stage. Our results indicate that the nervous system temporally controls the UPR pathway to maintain ER homeostasis during development and immune activation.  相似文献   

13.
14.
15.
Accumulation of mis- and unfolded proteins during viral replication can cause stress in the endoplasmic reticulum (ER) and trigger the unfolded protein response (UPR). If unchecked, this process may induce cellular changes detrimental to viral replication. In the report, we investigated the impact of HSV-1 on the UPR during lytic replication. We found that HSV-1 effectively disarms the UPR in early stages of viral infection. Only ATF6 activation was detected during early infection, but with no upregulation of target chaperone proteins. Activity of the eIF2α/ATF4 signaling arm increased at the final stage of HSV-1 replication, which may indicate completion of virion assembly and egress, thus releasing suppression of the UPR. We also found that the promoter of viral ICP0 was responsive to ER stress, an apparent mimicry of cellular UPR genes. These results suggest that HSV-1 may use ICP0 as a sensor to modulate the cellular stress response.  相似文献   

16.
Human diseases caused by mutations in extracellular matrix genes are often associated with an increased risk of cataract and lens capsular rupture. However, the underlying mechanisms of cataract pathogenesis in these conditions are still unknown. Using two different mouse models, we show that the accumulation of collagen chains in the secretory pathway activates the stress signaling pathway termed unfolded protein response (UPR). Transgenic mice expressing ectopic Col4a3 and Col4a4 genes in the lens exhibited activation of IRE1, ATF6, and PERK associated with expansion of the endoplasmic reticulum and attenuation of general protein translation. The expression of the transgenes had adverse effects on lens fiber cell differentiation and eventually induced cell death in a group of transgenic fiber cells. In Col4a1+/Δex40 mutant mice, the accumulation of mutant chains also caused low levels of UPR activation. However, cell death was not induced in mutant lenses, suggesting that low levels of UPR activation are not proapoptotic. Collectively, the results provide in vivo evidence for a role of UPR in cataract formation in response to accumulation of terminally unfolded proteins in the endoplasmic reticulum.  相似文献   

17.
18.
ER signaling in unfolded protein response   总被引:11,自引:0,他引:11  
Kaneko M  Nomura Y 《Life sciences》2003,74(2-3):199-205
Abnormally folded proteins are susceptible to aggregation and accumulation in cells, ultimately leading to cell death. To protect cells against such dangers, expression of various genes including molecular chaperones can be induced and ER-associated protein degradation (ERAD) activated in response to the accumulation of unfolded protein in the endoplasmic reticulum (ER). This is known as the unfolded protein response (UPR). ERAD requires retrograde transport of unfolded proteins from the ER back to the cytosol via the translocon for degradation by the ubiquitin-proteasome system. Hrd1p is a UPR-induced ER membrane protein that acts as a ubiquitin ligase (E3) in the ERAD system. Hrd3p interacts with and stabilizes Hrd1p. We have isolated and identified human homologs (HRD1 and SEL1/HRD3) of Saccharomyces cerevisiae Hrd1p and Hrd3p. Human HRD1 and SEL1 were up-regulated in response to ER stress and overexpression of human IRE1 and ATF6, which are ER stress-sensor molecules in the ER. HEK293T cells overexpressing HRD1 showed resistance to ER stress-induced cell death. These results suggest that HRD1 and SEL1 are up-regulated by the UPR and contribute to protection against the ER stress-induced cell death by degrading unfolded proteins accumulated in the ER.  相似文献   

19.
20.
Signal integration in the endoplasmic reticulum unfolded protein response   总被引:16,自引:0,他引:16  
The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号